
LOCAL RIGIDITY AND SIX FUNCTOR FORMALISMS

ADRIAN CLOUGH

Abstract. The coefficient categories of six functor formalisms are often locally rigid, and when this is

the case, the exceptional pushforward and pullback adjunctions may be defined formally. In this short

note it is shown that for f a proper map resp. an open embedding the well known formulas f! ≃ f∗

resp. f! ≃ f♯ may likewise be deduced formally.

Consider a site C of suitable geometric objects such as schemes, manifolds, locally compact Haus-

dorff spaces, . . . , then a six functor formalism on C consists, roughly speaking, of a lax symmetric

monoidal sheaf on CorrC valued in PrL satisfying well-known properties expressing various geometric-

ally meaningful dualities (see e.g., [Kha23] or [Sch23]). In [Lur17, Th. 5.5.5.1] Lurie constructs for any

locally compact Hausdorff space X an equivalence between the symmetric monoidal categories ShX of

spectrum-valued sheaves on X and its dual in ModSp, the category CoShX of cosheaves on X. Volpe

uses this fact in [Vol21] to construct a six functor formalism on the category of compactly generated

Hausdorff spaces. For any continuous map f : X → Y the exceptional pushforward f! is determined

using the commutative diagram
ShX CoShX

ShY CoShY

≃

f! f∗

≃

For any locally compact Hausdorff space X the symmetric monoidal category ShX is locally rigid, which

entails that ShX canonically has the structure of Frobenius algebra in ModSp and is consequently

canonically self-dual (see Example 1.6). In [KN24] it is observed that the self-duality ShX ≃ CoShX is

the one given by local rigidity, and thus that the construction of f! is completely canonical.

It is well-known that the formula

f∗ ≃ f!

holds for f a proper map in C, and

f! ≃ f♯,

for f , an open embedding, where f♯ denotes the left adjoint of f∗. In this note I define what it means

for a symmetric monoidal functor A ← B : f∗ between locally rigid algebras to be proper or an open

embedding, and derive the above formulas for such functors. It is expected that coefficient categories

of six functor formalisms other than the one touched upon above are also locally rigid, opening up the

possibility of defining exceptional pullback and pushforward functors and thus also establishing the above

formulas in greater generality than previously possible.

Organisation: This note consists of four sections: In §1 I recall some necessary background on locally

rigid algebras. Then, in §2 and §3 I prove the above formulas. Finally, in §4 I pose some questions about

how to relate these results to parametrised homotopy theory.
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Notation: Denote by CAlgPrL the symmetric monoidal 2-category of presentably symmetric monoidal

categories and colimit preserving symmetric monoidal functors. Reflecting the view towards six functor

formalisms of the theory developed in this article, morphisms in CAlgPrL are usually written as A ←
B : f∗ – with the right adjoint of f∗ denoted by f∗ : A → B – where A and B are to be thought of as

coefficient categories associated to geometric objects X,Y together with a map f : X → Y .

For a presentably symmetric monoidal category A, the symmetric monoidal 2-category of A-modules

and A-linear functors is denoted by ModA, and for any two A-modules M,N the category of A-linear

functors a.k.a. morphisms of A-modules M → N is denoted by [M,N]A. Moreover, I write CAlgA for(
CAlgPrL

)
A/

.

Acknowledgements: I thank Maxime Ramzi for answering several questions, Rok Gregoric for a careful

reading of a draft of this note, and Mitchell Riley for taking an interest in this project.

1. Local rigidity

In this section I first recall some basic facts about locally rigid algebras and then define exceptional

pushforward and pullback functors in §1.1.

Recall that a morphism M← N : f∗ of A-modules is an A-internal left adjoint if its right adjoint

f∗ : M → N preserves colimits and satisfies the projection formula w.r.t. the A-action, i.e., if for all

objects a in A and m in M the natural map a⊗ f∗(m)→ f∗(a⊗m) is an isomorphism.

Definition 1.1. A morphism A← B in CAlgPrL is locally rigid if

(a) A is dualisable as an object of ModB, and

(b) the multiplication map A← A⊗B A : ∆∗ is an A⊗B A-internal left adjoint.

⌟

To my knowledge, the notion of local rigidity was first introduced in [Gai15] (where it is called rigidity).

Locally rigid categories are discussed in detail in [Ram24] and [AGK+20, App. C].

Remark 1.2. It will be seen below that any locally rigid B-algebra is canonically endowed with the

structure of a Frobenius algebra in ModB (see [Lur17, Def. 4.6.5.1]). Condition (a) reflects the fact that

any Frobenius algebra is canonically self dual. Condition (b) is equivalent to requiring that ∆∗ : A →
A⊗B A is A-linear w.r.t. the two A actions on A⊗B A, i.e., that the diagrams

A⊗B A A⊗B A⊗B A A⊗B A A⊗B A⊗B A

A A⊗B A A A⊗B A

id⊗∆∗

∆∗ ∆∗⊗id

∆∗⊗id

∆∗ id⊗∆∗

∆∗ ∆∗

commute. By Proposition 1.5 the functor ∆∗ : A → A ⊗B A is the comultiplication associated to the

Frobenius algebra structure on A, so property (b) encodes the Frobenius law/condition of A (see [Koc04,

Lm. 2.3.19]). ⌟

Let V←W : p∗ be a W-internal left adjoint in CAlgPrL such that the essential image of p∗ generates

V under colimits1 then for any W-module P the adjunction p∗ : V W : p∗⊥ induces adjunctions

(1) P = W⊗W P V⊗W P⊥ and P = [W,P]W [V,P]W⊥ ,

1It would probably be more natural to require V to be generated under W-enriched colimits in some suitable sense.
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both of which are monadic. The monads induced by these adjunctions are both equivalent to p∗1V ⊗ ,

so that V⊗W P and [V,P]W are likewise equivalent (see [AGK+20, Prop. C.2.3] for details).

Remark 1.3. The functors V⊗W and [V, ]W are the left and right adjoint functors, respectively, of the

restriction of scalars along V ← W : p∗. That these coincide in the above case could perhaps profitably

be viewed as a form of ambidexterity, an important manifestation of duality in six functor formalisms. ⌟

For the remainder of this section A← B : f∗ denotes a locally rigid morphism in CAlgPrL , and ( )∨

denotes duality in ModB w.r.t. ⊗B. Applying the discussion above to

• W = A⊗B A

• V = A

• P = M∨⊗BN for any A-modules M and N, with M dualisable over B, and the action of A⊗BA

on M∨ ⊗B N given by acting with each copy of A on M∨ and N, respectively,

one obtains

(2) M∨ ⊗A N ≃ A⊗A⊗BA M∨ ⊗B N ≃ [A,M∨ ⊗B N]A⊗BA ≃ [A, [M,N]]A⊗BA ≃ [M,N]A

showing that M∨ is not only dual to M as a B-module, but also as an A-module. Hence, setting N = A

yields

(3) M∨ ≃ [M,A]A.

Remark 1.4. The above discussion reflects a general phenomenon whereby for the locally rigid morphism

A← B : f∗, restriction of scalars both preserves and reflects properties of A-modules. This phenomenon

is explored in detail in [Ram24]. ⌟

The canonical equivalence A∨ ≃ A yields a commutative diagram

A A

A∨ ⊗B A A⊗B A

=

1A 7→idA ∆∗

and thus the counit of the self-duality of A is given by B
f∗

−→ A
∆∗−−→ A⊗BA (see [GKRV22, Lm. C.3.3]).

Proposition 1.5 ([AGK+20, Lm. C.3.5]). The B-linear dual of ∆∗ is given by ∆∗.

Proof. Under the canonical equivalences [A ⊗B A,A]B ≃ [A,A ⊗B A]B ≃ [B,A ⊗B A ⊗B A]B given

by duality in ModB w.r.t. ⊗B and local rigidity, the functors ∆∗ and ∆∗ correspond to the functors

B→ A⊗B A⊗B A given by the two outer paths in the following diagram

B A⊗B A A⊗B A⊗B A A⊗B A⊗B A⊗B A A⊗B A⊗B A⊗B A

A A⊗B A A⊗B A⊗B A

∆∗⊗id

∆∗

id⊗ id⊗∆∗

id⊗∆∗

σ2,3

id⊗∆∗⊗id
∆∗⊗ id⊗ id

∆∗ id⊗∆∗

where σi,j exchanges the i-th and j-th factors.

The leftmost triangle as well as the two squares commute. Unfortunately, the rightmost triangle does

not. Using the parts of the preceding diagram which do commute as well as the cocommutativity and
3



coassociativity of ∆∗ it easily checked that the following diagram

B A⊗B A A⊗B A⊗B A A⊗B A⊗B A⊗B A

A A⊗B A A⊗B A⊗B A A⊗B A⊗B A

∆∗⊗id

∆∗

σ1,2⊗∆∗

id⊗∆∗⊗id

∆∗ ∆∗⊗id σ1,2

commutes and has outer paths canonically equivalent to those of the first diagram. □

Thus, the dual of the counit – which is equivalent to the unit – is given by A⊗B A
∆∗

−−→ A
(f∗)∨−−−−→ B,

exhibiting A as a Frobenius algebra over B (see [Lur17, Def. 4.6.5.1]).

Observe that (f∗)∨ corresponds to the image of 1B under B = [B,B]B
≃−→ [B,A]A. This morphism is

called the exceptional global sections functor and is denoted by ΓA
B! (or ΓB!, when A is clear from

context).

Example 1.6 ([Aok23, §6]). Let X be a locally compact Hausdorff space, then the category of spectrum-

valued sheaves ShX is a locally rigid Sp-algebra. By [Lur17, Th. 5.5.5.1] the category ShX is dualisable.

The equivalence ShX⊗SpShX = ShX×X (see [Lur17, Ex. 4.8.1.19]) together with the Hausdorff condition

on X ensures that the functor ShX
∆∗

←−− ShX ⊗Sp ShX is an ShX ⊗Sp ShX-internal right adjoint. The

exceptional global sections functor is given by global sections with compact support, explaining the notation

above. ⌟

Remark 1.7. The notion of a locally rigid algebra A ← B is itself reminiscent of a locally compact

Hausdorff space: Condition (a) says that A is locally compactly generated. Indeed, an Sp-module is

dualisable precisely when it is generated under colimits by compactly exhaustible objects (see [Ram24,

Th. 2.36]), and for ShX , an open subset of X is compactly exhaustible if it can be written as the union

of an increasing sequence of compact subsets. Condition (b) encodes separatedness, as the multiplication

map is proper in the sense of §2 (see also Question 3.6). ⌟

I will briefly discuss two special classes of locally rigid algebras, further illustrating the analogy between

such algebras and locally compact Hausdorff spaces.

Proposition 1.8. The following are equivalent:

(I) The functor A← B : f∗ admits a B-internal right adjoint.

(II) There is an equivalence ΓA! ≃ f∗.

Proof. Assuming (I), it is shown explicitly that B
f∗

−→ A
∆∗−−→ A ⊗B A and A ⊗B A

∆∗

−−→ A
f∗−→ B

provide dualisability data in [HSSS21, §2.2]. Thus, A ⊗B A
∆∗

−−→ A
f∗−→ B is equivalent to the counit

A⊗B A
∆∗

−−→ A
ΓA!−−→ B. As A⊗B A

∆∗

−−→ A admits a section, it follows that ΓA! ≃ f∗.

The converse follows from Proposition 1.15 below (which is independent of this proposition). □

Definition 1.9. The morphism A← B : f∗ is rigid if it satisfies the equivalent definitions of Proposition

1.8. ⌟

Remark 1.10. The analogy between locally compact Hausdorff spaces and locally rigid algebras in Remark

1.7 specialises to one between rigid algebras and compact Hausdorff spaces, as the morphism A← B : f∗

is proper in the sense described in §2.

Another interesting special case is when A is compactly generated. By [Har23] this is analogous to a

totally disconnected locally compact Hausdorff space. ⌟
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Remark 1.11. In [Efi24, App. F] Efimov explains a different, more detailed analogy between dualisable

Sp-modules and compact Hausdorff spaces. ⌟

Before moving on to exceptional pushforwards and pullbacks in §1.1 I will add some clarifications

about the relationship between duality over A and duality over B.

Recall that restriction of scalars ModA →ModB has a right adjoint given by [A,N]B ←[ N, so that

one obtains the following natural equivalences for any A-module M

(4)
[M,A]A

≃−→ [M, [A,B]B]A
≃−→ [M,B]B

λ 7→ ΓA!

(
λ( )⊗ ( )

)
7→ ΓA! ◦ λ.

Proposition 1.12. For any A-modules M,N with M dualisable as a B-module, the equivalence given by

composing

[M,N]A
≃−→ [M,A]A ⊗A N

(ΓA!◦ ,idN)−−−−−−−−→ [M,B]B ⊗A N

is equivalent to (2).

Proof. Clearly, the two equivalences are the same when M = N = A. The case N = A may then be

deduced from the naturality of (2), as for any object m in M one obtains a commutative diagram

[A,A]A [A,A]A ⊗A A [A,B]B ⊗A A

[M,A]A [M,A]A ⊗A A [M,B]B ⊗A A

≃ ≃

≃ ≃

where the vertical arrows are given by precomposing with m : A → M. Finally, for the general case it

is enough to observe that any A-module N may be written as a colimit of diagram taking limits in the

subcategory of ModA spanned by A, and that ⊗A commutes with colimits. □

By the construction of (2) one obtains the following corollary:

Corollary 1.13. For any A-modules M,N with M dualisable as a B-module the diagram

[M,B]B ⊗B N

[M,A]A ⊗A N [M,B]B ⊗A N
(ΓV!◦ ,idN)

commutes, where the diagonal arrows are the monadic left adjoints of (1) applied to the appropriate

choice of V and W as in the discussion preceding (2).

1.1. Exceptional pullbacks and pushforward functors. Let A
f∗

←− B
g∗

←− C be morphisms in

CAlgPrL such that A and B are locally rigid over C. In this subsection ( )∨ denotes the duality

functor in ModC.

Consider a C-linear functor between dualisable C-modules M ← N : h∗, then its image under the

canonical equivalence [N,M]C ≃ [M∨,N∨]C provided by duality in ModC w.r.t. ⊗C may be written

explicitly as the functor (h∗)∨ : M∨ → N∨, (λ : M → C) 7→ (λ ◦ h∗ : N → C). The exceptional

pushforward f! : A→ B is the unique functor making the diagram

A [A,C]C

B [B,C]C

≃

f! (f∗)∨

≃
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commute, where the horizontal maps are given by (3). Observe that the equivalence A
≃−→ [A,C]C is

given by a 7→ ΓA!(a⊗A ), so that f! is uniquely characterised as the functor making the formula

(5) ΓB!(f!(a)⊗B ) ≃ ΓA!(a⊗A f∗( ))

hold. The functor (f∗)∨ is cocontinuous, and thus also f!. The right adjoint of f! is called the exceptional

pullback of f∗ and is denoted by f !.

Remark 1.14. Let f : X → Y be a morphism in a suitable site of geometric objects, equipped with a six

functor formalism valued in locally rigid algebras, then using the above construction it is not necessary

to be able to factor f into an open embedding followed by a proper map in order to define the exceptional

pushforward functor f! (which is how it is usually constructed). ⌟

Proposition 1.15. The exceptional pushforward f! is f∗-linear.

Proof. Using (5), for all objects a in A and b in B one has

ΓB!(b⊗B f!(a)⊗B ) ≃ ΓA!(a⊗B f∗(b⊗B )) ≃ ΓA!(f
∗(b)⊗A a⊗A f∗( )).

□

2. Proper functors

Throughout this section A
f∗

←− B
g∗

←− C denote morphisms in CAlgPrL , with A and B locally rigid

over C. Moreover, f! denotes the C-linear dual of f∗ (see §1.1).

Definition 2.1. The functor A
f∗

←− B is proper if its right adjoint is B-linear. ⌟

The goal of this section is to prove the following theorem, justifying the term proper by deducing the

characteristic property of proper maps in the context of six functor formalisms:

Theorem 2.2. If f∗ is proper, then there is a canonical equivalence f! ≃ f∗.

The proof of this theorem requires two preliminary results.

Proposition 2.3. Assume that A ← B : f∗ is locally rigid, then there is a canonical equivalence

ΓC
A! ≃ ΓC

B! ◦ ΓB
A!.

Proof. By (4) the proposition is equivalent to the statement that the uppermost 2-cell in the diagram

[A,A]A ⊗A A [A,B]B ⊗A A [A,C]C ⊗A A

[A,B]B ⊗B A [A,C]C ⊗B A

[A,C]C ⊗C A

commutes.

The arrows in the left- and rightmost cells are the monadic left adjoints of (1) applied to appropriate

choices of V and W as in the discussion preceding (2).

I will show that the precompositions of both ΓC
A! and ΓC

B! ◦ΓB
A! with the leftmost arrow are equivalent

to the rightmost arrow, so that the proposition follows from the Barr-Beck-Lurie theorem together with

the universal property of the category of algebras over a monad (see [RV20, §10.2]).
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The outer triangle commutes by Corollary 1.13. It thus remains to show that the triangle formed by

ΓC
B! ◦ΓB

A! together with the leftmost and rightmost arrows commutes, which in turn follows from showing

that the cells contained in this triangle commute: The square commutes by the functoriality of tensoring.

The triangles bordering the square to the left and below commute by Corollary 1.13. The remaining two

triangles commute as they exhibit, respectively, the composition of left and right adjoints to restrictions

of scalars. □

Proposition 2.4. Assume that A ← B : f∗ admits a C-internal right adjoint, then A ← B is a locally

rigid B-algebra.

Proof. As A is dualisable as a C-module it is also dualisable as a B-module by (2). It thus remains

to verify property (b) in Definition 1.1. By [AGK+20, Props. C.5.5 & C.6.4] it suffices to prove that

A⊗B A→ A is a C-linear left adjoint which I deduce from the following claim.

Claim: The quotient map A⊗C A→ A⊗B A admits a B⊗C B-internal and conservative right adjoint.

Thus, A ⊗B A → A is a B ⊗C B-internal (so a fortiori C-internal) left adjoint by [Ram24, Lm. 1.30]

and the fact that the composition of

A⊗C A→ A⊗B A→ A

is an A⊗C A-internal (so a fortiori B⊗C B-internal) left adjoint.

Proof of claim: The quotient map A⊗C A→ A⊗B A may be written as

(6) (A⊗C A)⊗B⊗CB (B⊗C B)→ (A⊗C A)⊗B⊗CB B.

As B is locally rigid, (6) admits a B ⊗C B-internal left adjoint by [Ram24, Cor. 1.32], and because the

image of (6) generates (A⊗C A)⊗B⊗CB B under colimits, this right adjoint is conservative. □

Proof of Theorem 2.2. By Proposition 1.8 one has ΓB
A! ≃ f∗, so the theorem follows by combining the

preceding two results. □

Question 2.5. Under duality in ModC, the functors ΓB
A! and f∗ correspond to functors C → B ⊗C A

given by the upper and lower paths of the following diagram:

C B A

A⊗C A

B⊗C B B⊗C A

g∗ f∗

(µB)∗

(µA)∗

ΓB
A!⊗id

id⊗f∗

Assume that f∗ admits a B-internal right adjoint, so that ΓB
A! ≃ f∗ by Proposition 1.8. Then by the

symmetric monoidality of f∗ one obtains a mate transformation in the above diagram. Transposing to

functors A→ B yields a natural transformation f! ⇒ f∗. Is this natural transformation the equivalence

of Theorem 2.2? ⌟
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3. Open embeddings

Let j : U ↪→ X be an open embedding of locally compact Hausdorff spaces. Then the exceptional

pushforward functor j! : ShU → ShX may be identified with j♯, the left adjoint of j∗. In this section I

will define open embeddings between locally rigid algebras and derive the above identification for such

functors. All statements will be about algebras over Sp, as the proof of Theorem 3.5 uses the theory of

recollements, which to my knowledge has not been developed over other commutative algebras in PrL.

Definition 3.1 ([Sha22, Def. 2.20]). A recollement is a diagram of adjoints between Sp-algebras

U X Z

j♯

j∗

j∗
i∗

i!

i∗

such that

(a) i∗, j∗ are symmetric monoidal,

(b) Imj♯ = Keri∗ Kerj∗ = Imi∗ Imj∗ = Keri!

⌟

Remark 3.2. Observe that any of the six functors in a recollement determines all the others. ⌟

Definition 3.3. A morphism U ← X : j∗ of Sp-algebras is called an open embedding if it extends

to a recollement with j∗ as in Definition 3.1. A functor i∗ : X → Z is called a closed embedding if it

extends to a recollement with i∗ as in Definition 3.1. ⌟

Proposition 3.4 ([Sha22, Prop. 2.34]). The functors i∗ and j♯ are X-linear. □

Theorem 3.5. Let U← X : j∗ be an open embedding, then there exists a canonical equivalence j! ≃ j♯.

Proof. Consider the diagram

[U,Sp]L [X,Sp]L [Z,Sp]L

(j∗)∨

((j♯)
∗)R

(j♯)
∨ (i∗)

∨

((i∗)∨)R

(i∗)∨

Under the equivalences U ≃ [U,Sp]L, X ≃ [X,Sp]L, Z ≃ [Z,Sp]L, the functor i∗ may be identified with

(i∗)∨, because i! ≃ i∗ by Proposition 3.4 and Theorem 2.2, so that j♯ becomes identified with (j∗)∨ by

Remark 3.2, yielding the desired identification j! ≃ j♯. □

Question 3.6. In various geometric contexts a morphism X → Y is said to be separated if the diagonal

map X → X ×Y X is a closed embedding. In §1 I argued that condition (b) in Definition 1.1 could

be viewed as form of separatedness. An alternative notion of separatedness for algebras in PrL more

closely analogous to familiar geometric situations would thus be to require that the multiplication map

in Definition 1.1 be a closed embedding rather than just proper. Are there interesting examples of such

algebras? What good properties do such algebras possess? Or is the multiplication map of a locally rigid

algebra automatically a closed embedding? ⌟

4. Parametrisation

Let C be a site, and D∗ : Cop → CAlgA a sheaf taking values in the subcategory of CAlgA spanned

by locally rigid A-algebras (where A is usually Sp). Then D! := [D∗,A]L : C → PrLA is a cosheaf, such
8



that for each object X in C there is a canonical equivalence D∗X ≃ D!X. I will write DX to mean

D∗X or equivalently D!X. The promotion of the pair D∗,D! to a six functor formalism necessitates the

following two prerequisites (with which all other parts of being a six functor formalism are properties,

as explained in [Kha23]):

(a) For each morphism f : X → Y in C the functor f! : DX → DY satisfies the projection formula

with respect to f∗.

(b) For each pullback square
X ′ X

Y ′ Y

g

p q

f

in C the square
DX ′ DX

DY ′ DY

g!

p∗

f!

q∗

commutes.

By Proposition 1.15, prerequisite (a) is a condition, which is automatically satisfied. Prerequisite (b) con-

stitutes extra structure which, together with (a), should encode that D! is adequately C-parametrisedly

D∗-linearly dual to D∗. It would be beneficial to make sense of what this means precisely. One difficulty

which would have to be overcome is that locally rigid A-algebras are not closed under limits in CAlgA,

so that the extension of D∗ : Cop → CAlgA to ShC no longer necessarily takes values in locally rigid

A-algebras for non representable sheaves on C.
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