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A: Fractured ∞-toposes

A fractured ∞-topos is an adjunction j! : E
corp E : j∗⊥ between ∞-to-

poses Ecorp and E such that (among other things), j! preserves pullbacks, E is
generated under colimits by the image of j!, and j∗ admits a right adjoint (see
[Lur18, Def. 20.1.2.1]).

Given a geometry (G,Gad, τ ) (see [Lur09, Def. 1.2.5]), taking sheaves on
(G, τ ) and (Gad, τ |Gad) will respectively produce E and Ecorp of a fractured ∞-
topos, and the restriction functor gives j∗. The theory of fractured∞-toposes
may then be viewed as a “coordinate free” version of the theory of geometries
developed in [Lur09].

TakingG to be the opposite∞-category of compact commutative ring spec-
tra,Gad to be thewide subcategorywhere themorphisms are the étalemorph-
isms, and τ to be the étale topology on G, then, surprisingly, Ecorp turns out to
be equivalent to the∞-category of Deligne-Mumford stacks (satisfying a cer-
tain finiteness condition) and étale morphisms between them. This pattern
generalises to other geometries, so we see that fractured toposes may also be
seen as a way to formalise the relationship between petit and gros∞-toposes
of Deligne-Mumford stacks.

B: Shapes and locally contractible ∞-toposes
For any ∞-topos E the constant sheaf functor E ← S : π∗ admits a pro-left
adjoint π! : E → Pro(S). For any object E ∈ E the pro-homotopy type π!E is
called the shape of E. We write π!E := π!1. Any geometric morphism f : E → F

induces a map π!E → π!F. Moreover, π!E = π!E/E for any E in E.
An∞-topos E is called locally contractible if π! factors through the inclu-

sion S ↪→ Pro(S), and thus constitutes a true left adjoint to π∗.
E.g., for any small ∞-category A the diagonal functor Fun(Aop, S) ← S

admits both a left and a right adjoint given by taking colimits and limits
respectively, so that Fun(Aop, S) is a locally contractible ∞-topos; more-
over, we have π! Fun(Aop, S) = colim 1 = BA. A functor A → B between
small∞-categories is initial (a.k.a. coinitial, a.k.a. cofinal, a.k.a…) iff the in-
duced pullback functor Fun(Aop, S) ← Fun(Bop, S) preserves shapes.

B1: If E is generated by a subcategory B, all of whose objects have con-
tractible shape, then E is locally contractible and both components of the
adjunction a∗ : Fun(Bop, S) E : a∗⊥ preserve shapes. If we more-
over have an initial functor f : A → B, then the shape of any object E in E

may be calculated as colimE(f, E).

B2: If the pushforward component of a geometric morphism E → F ad-
mits an extra right adjoint, then the induced map π!E → π!F is an iso-
morphism. An adjunction between small ∞-categories A, B will give rise
to such a geometric morphism, and in this case we recover the statement
that BA ≃ BB. If E is a fractured ∞-topos, then for any E in Ecorp the
induced adjunction (j!)/E : Ecorp/E E/j!E : (j∗)/E⊥ is a geometric morphism

where (j∗)/E admits an extra right adjoint, so π!E = π!E
corp
/E = π!E/j!E = π!j!E.

C: Homotopical calculi
Let E be locally contractible ∞-topos then, being a left adjoint, π! : E → S

commutes with colimits. For some applications, e.g., the ones described in F,
it is useful to commute certain limits past π!. Denote any morphism in E sent
to an isomorphism by π! as a shape equivalence. For any E in E the induced
map (π!)/E : E/E → S/π!E admits a fully faithful right adjoint, so that (π!)/E is
then a localisation along the shape equivalences, and limits commuting past π!
may be viewed as homotopy limits. Thus, one is led to construct homotopical
calculi on E.

We shall consider the case of homotopy pullbacks. A morphism f : E → E ′

in E is called sharp if the induced functor E/E ← E/E′ : f ∗ preserves shape equi-
valences. In this case, f induces a functor S/E ← S/E′ which is right adjoint to
the postcomposition functor S/E → S/E′, and thus pullbacks along f are homo-
topy pullbacks.

E1: Thenotions ofmodel structure andfibration structure (a variant ofmodel
structurewhich only formalisesweak equivalences andfibrations)make sense
on∞-categories, and the fibrations of any fibration structure (and thusmodel
structure) on E are sharp. In the situation of B1, if Fun(Aop, S) admits a co-
fibrantly generated model structure, e.g., when A is a test category, then it is
fairly straightforward to transfer this model structure to one on E, which is
Quillen equivalent to the one on Fun(Aop, S), where the weak equivalences are
the shape equivalences, and thus yielding a supply of sharp maps on E.

1

D: The fractured ∞-topos of differentiable sheaves
For any r-times differentiable manifoldM the∞-topos (Diff rét)/M is equivalent
to the ∞-category of (S-valued) sheaves on the underlying topological space
ofM . This allows us to relate properties ofM to properties of its underlying
topological space in a systematic manner.

For instance, we can show that if M is closed, then M is compact in the
categorical sense in Diff r, i.e., Diff r(M, ) : Diff r → S preserves filtered colim-
its. To see this, let A be a small filtered ∞-category, then for any functor
X : A → Diff r we have by [Lur09, Th. 7.3.1.16 & Rmk. 7.3.1.5] that

Diff r(j!M, colimα∈AXα) = Diff rét(M, j∗ colimα∈AXα) = Diff rét(M, colimα∈A j
∗Xα)

= colimα∈ADiff rét(M, j∗Xα) = colimα∈ADiff r(j!M,Xα).

Surprisingly, if M is compact with non-empty boundary, then M is not cat-
egorically compact, as infinitely many maps Rd → M are then required to
specify the smooth structure onM .

E: Shapes, cofinality and differentiable sheaves
The fractured ∞-topos structure j! : Diff rét → Diff r may be used to show that
Diff r is locally contractible, by showing thatRd has a trivial shape as an object
in Diff rét (and thus in Diff r) for all d ≥ 0. Finite products of ∞-toposes with
trivial shape again have trivial shape, so that one may reduce to the case of
d = 1, where the statement follows from the fact that R is connected and that
all non-zero cohomology vanish, which itself can be shown using a Galois the-
oretic argument.

E1: The functor A• : ∆ → Cartr, [n] �→
{
(x0, . . . , xn) ∈ Rn+1 x0 + · · · + xn = 1

}
is

initial, so that by B1 the smooth total singular complex (w.r.t. extended sim-
plices) calculates the shape of any differentiable sheaf. These arguments can
easily be modified to show that a wide array of total singular complexes (e.g.
with respect to standard simplices) calculate shapes.

For any 0 ≤ r ≤ s ≤ ∞ the forgetful functor u : Mfds → Mfdr is both cover
preserving and reflecting, yielding a geometric morphism u : Diffs → Diffr
where u∗ admits a left adjoint u!. The unique geometricmorphism πs : Diffs → S

is given by πr ◦u, so that (πs)! = (πr)!◦u!; setting r = 0 and s = ∞, we see that the
shape of any smoothmanifold is modelled by its underlying topological space.

That shapes may be calculated using hypercovers, as suggested in the in-
troductory discussion, follows from descent and the fact that π! is a left ad-
joint, and thus commutes with colimits.

E2: The total singular complex functor Fun(∆op, S) ← Top factors through
the functor u∗ : Diff 0 ← Top induced from the inclusion u : Cart 0 ↪→ Top. Let
U• → X be a hypercover of topological spaces, then it is not hard to show that
u∗U• → u∗X is a hypercover of sheaves, so that u∗X is a homotopy colimit of

u∗U• (and thusX, a homotopy colimit ofU•), as π! preserves colimits, so that
we recover Dugger and Isaksen’s hypercover theorem.
Similarly, if E → B is a topological principal G bundle, then u∗E → u∗B is a

principal u∗G bundle inDiff 0, so thatB is a homotopy quotient ofE. This fact is
often invoked without comment; classical proofs don’t seem to be well-known
(e.g., [May75, §7 & §8]) and are very technical.

F: Homotopical calculi on differentiable sheaves
LetAbe a closed smoothmanifold, andX, any smoothmanifoldwithout bound-
ary, then Diff∞(A,X) admits the structure of a Fréchet manifold — equival-
ent to the internal mapping sheaf Diff∞(A,X) — and it is a folk theorem that
Diff∞(A,X) models S(π!A, π!X). The shape functor π! : Diffr → S preserves
finite products, so that for any sheaves A,X we obtain a comparison map
π!Diff∞(A,X) → S(π!A, π!X); we prove the following generalisation of [BEBP19,
Th. 1.1]:

Theorem (C.). Let A be a nice, possibly infinite dimension, manifold1, and
X any sheaf, then π!Diff∞(A,X) → S(π!A, π!X) is an isomorphism.

Call A formally cofibrant if π!Diff∞(A,X) → S(π!A, π!X) is an isomorph-
ism for all X, then the proof idea is as follows: Let S → D be a map between
formally cofibrant objects such that Diff∞(D,X) → Diff∞(S,X) is sharp for
all X, then for any “attaching” map f : S → A the pushout A ∪f D is also
formally cofibrant. Moreover, any sheaf which is R-homotopy equivalent to
a formally cofibrant sheaf is itself formally cofibrant; in particular, any R-
contractible sheaf is formally cofibrant. Kihara endows the simplices ∆n with
anon-standard smooth structurewhich coincideswith theusual smooth struc-
ture on ∆̊n, but for which the horn inclusions Λn

i ↪→ ∆n admit retracts. The
goal is then to show that the morphism Diff∞(∆n,X) → Diff∞(∂∆n,X) is sharp
for all X, and that any nice manifold is R-homotopy equivalent to a simpli-
cial complex built from Kihara’s simplices. Given E1, one might be tempted
to show that the above morphism is sharp by showing it is a fibration in the
model structure transferred using Kihara’s simplices; unfortunately, this is
equivalent to showing that this model structure is Cartesian which is false.
Instead, using the cube category one can construct a functor → Pro(Diff r),
which induces a fibration structure in which the above morphism is indeed
sharp.

1See [Kih20, Th. 11.1]; any finite dimensional paracompact Hausdorff manifold is nice.
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The restriction of the shape functor to set-valued sheaves π!Diff r≤0 → S is still a localisation, so that we obtain a model for homotopy
types, which in the setting of geometric topology is inmanyway superior to themodel provided by topological spaces (a fact already
exploited in [GTMW09] and [Kup19]). E.g, many important spaces in geometric topology such as mapping spaces or spaces of
embedded manifolds naturally come with a smooth structure. When trying to encode these spaces as topological spaces one has to
try to find topologies which approximate these smooth structures, which is often very intricate. On the other hand, these spaces
are frequently completely straightforward to write down as objects in Diff r≤0. Moreover, Diff r≤0 has excellent formal properties, e.g.,
the inclusion functor Diff r≤0 ↪→ Diff r commutes with filtered colimits, so that filtered colimits are homotopy colimits in Diff r≤0.

We illustrate the above considerations with the calculation of π! Conf(Rn) by making precise an idea originally due to Segal
([Seg79, Prop. 3.1]). Here, Conf(Rn) is the space of finite unordered configurations in Rn (without collisions), which in Diff r≤0 may
simply be defined as the sheaf which associates to any manifold M the set of submanifolds C ⊆ M × Rn such that the map C → M
is a submersion with 0-dimensional fibres (thus, avoiding the difficulty of topologically encoding how points in Rn may “escape to
infinity”). For every ε > 0 denote by Confε(Rn) (resp. Conf≤1(Rn)) the subspace of Conf(Rn) consisting of those configurations con-
taining at most one point in B̊ε(0) (resp., all of Rn), then Conf≤1(Rn)may be exhibited as a retract of Confε(Rn) by pushing all points
outside of B̊ε(0) in any configuration in Confε(Rn) off to infinity. Moreover, Conf≤1(Rn) is R-homotopy equivalent to Sn, as Conf≤1(Rn)
is essentially the one-point-compactification of Rn. Finally we have colimε>0 Confε(Rn) = Conf(Rn), so that

π! Conf(Rn) = π! colim
ε>0

Confε(Rn) = colim
ε>0

π!Confε(Rn) = colim
ε>0

π!S
n = π!S

n.
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A fractured∞-topos is an adjunction j! : E
corp E : j∗⊥ between∞-toposesEcorp andE such that (among other things), j! preserves

pullbacks, E is generated under colimits by the image of j!, and j∗ admits a right adjoint (see [Lur18, Def. 20.1.2.1]).
Given a geometry (G,Gad, τ) (see [Lur09a, Def. 1.2.5]), taking sheaves on (G, τ) and (Gad, τ |Gad) will respectively produce E and Ecorp of

a fractured∞-topos, and the restriction morphisms gives j∗. The theory of fractured∞-toposes may then be viewed as a “coordinate free”
version of the theory of geometries developed in [Lur09a].

Taking G to be the opposite ∞-category of compact commutative ring spectra, Gad to be the wide subcategory where the morphisms
are the étale morphisms, and τ to be the étale topology on G, then, surprisingly, Ecorp turns out to be equivalent to the ∞-category of
Deligne-Mumford stacks (satisfying a certain finiteness condition) and étale morphisms between them. This pattern generalises to other
geometries, so we see that fractured toposes may also be seen as a way to formalise the relationship between petit and gros∞-toposes of
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type π!E is called the shape of E. We write π!E := π!1. Any geometric morphism f : E → F induces a map π!E → π!F. Moreover, π!E = π!E/E

for any E in E.
An∞-topos E is called locally contractible if π! factors through the inclusion S ↪→ Pro(S), and thus constitutes a true left adjoint to π∗.
E.g., for any small ∞-category A the diagonal functor Fun(Aop, S) ← S admits both a left and a right adjoint given by taking colimits

and limits respectively, so that Fun(Aop, S) is a locally contractible ∞-topos; moreover, we have π! Fun(Aop, S) = colim 1 = BA. A functor
A → B between small∞-categories initial (a.k.a. coinitial, a.k.a. cofinal, a.k.a…) iff the induced pullback functor Fun(Aop, S) ← Fun(Bop, S)
preserves shapes.

B1: If E is generated by a subcategory B, all of whose objects have contractible shape, then E is locally contractible and both components
of the adjunction a∗ : Fun(Bop, S) E : a∗⊥ preserve shapes. If we moreover have an initial functor f : A → B, then the shape of any
object E in Emay be calculated as colimE(f,E).

B2: If the pushforward component of a geometric morphism E → F admits an extra right adjoint, then the induced map π!E → π!F is an
isomorphism. An adjunction between small ∞-categories A, B will give rise to such a geometric morphism, and in this case we recover
the statement that BA � BB. If E is a fractured ∞-topos, then for any E in Ecorp the induced adjunction j! : E

corp
/E E/j!E : j∗⊥ is a

geometric morphism where the pushforward admits an extra right adjoint, so that π!E = π!E
corp
/E = π!E/j!E = π!j!E.

C: Homotopical calculi
Let E be locally contractible ∞-topos then, being a left adjoint, π! : E → S commutes with colimits. For some applications, e.g., the ones
described inF, it is useful to commute certain limits past π!. Denote anymorphism inE sent to an isomorphismby π! as a shape equivalence.
For any E in E the induced map (π!)/E : E/E → S/π!E admits a fully faithful right adjoint, so that (π!)/E is then a localisation along the shape
equivalences, and limits commuting past π! may be viewed as homotopy limits. Thus, one is led to construct homotopical calculi on E.

We shall consider the case of homotopy pullbacks. A morphism f : E → E′ in E is called sharp if the induced functor E/E ← E/E′ : f∗

preserves shape equivalences. In this case, f induces a functor S/E ← S/E′ which is right adjoint to the postcomposition functor S/E → S/E′ ,
and thus pullbacks along f are homotopy pullbacks.
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to transfer this model structure to one on E, which is Quillen equivalent to the one on Fun(Aop, S), where the weak equivalences are the
shape equivalences, and thus yielding a supply of sharp maps on E.

For any r-times differentiablemanifoldM the∞-topos (Diff rét)/M is equivalent to the∞-category of (S-valued) sheaves on the underlying
topological space ofM . This allows us to relate properties ofM to properties of its underlying topological space in a systematic manner.

For instance, we can show that if M is closed, then M is compact in the categorical sense in Diff r, i.e., Diff r(M, ) : Diff r → S pre-
serves filtered colimits. To see this, let A be a small filtered ∞-category, then for any functor X : A → Diff r we have by [Lur09b,
Th. 7.3.1.16 & Rmk. 7.3.1.5] that

Diff r(j!M, colimα∈A Xα) = Diff rét(M, j∗ colimα∈A Xα) = Diff rét(M, colimα∈A j∗Xα)
= colimα∈ADiff rét(M, j∗Xα) = colimα∈ADiff r(j!M, j∗Xα).

Surprisingly, if M is compact with non-empty boundary, then M is not categorically compact, as infinitely many maps Rd → M are then
required to specify the smooth structure onM .

E: Shapes, cofinality and differentiable sheaves
The fractured∞-topos structure j! : Diff rét → Diff r may be used to show that Diff r is locally contractible, by showing that Rd has a trivial
shape as an object in Diff rét (and thus in Diff r) for all d ≥ 0. Finite products of ∞-toposes with trivial shape again have trivial shape, so
that one may reduce to the case of d = 1, where the statement follows from the fact that R is connected and that all non-zero cohomology
vanish, which itself can be shown using a Galois theoretic argument.

E1: The functor A• : ∆ → Cartr, [n] �→
{

(x0, . . . , xn) ∈ Rn+1 x0 + · · ·+ xn = 1
}
is initial, so that by B1 the smooth total singular complex

(w.r.t. extended simplices) calculates the shape of any differentiable sheaf. These arguments can easily be modified to show that a wide
array of total singular complexes (e.g. with respect to standard simplices) calculate shapes.

For any 0 ≤ r ≤ s ≤ ∞ the forgetful functor u : Mfds → Mfdr is both cover preserving and reflecting, yielding a geometric morphism
u : Diffs → Diffr where u∗ admits a left adjoint u!. The unique geometric morphism πs : Diffs → S is given by πr ◦ u, so that (πs)! = (πr)! ◦ u!;
setting r = 0 and s = ∞, we see that the shape of any smooth manifold is modelled by its underlying topological space.

That shapes may be calculated using hypercovers, as suggested in the introductory discussion, follows from descent and the fact that
π! is a left adjoint, and thus commutes with colimits.

E2: The total singular complex functor Fun(∆op, S) ← Top factors through the functor u∗ : Diff 0 ← Top induced from the inclusion u :
Cart 0 ↪→ Top. Let U• → X be a hypercover of topological spaces, then it is not hard to show that u∗U• → u∗X is a hypercover of sheaves,
so that u∗X is a homotopy colimit of u∗U• (and thus X, a homotopy colimit of U•), as π! preserves colimits, so that we recover Dugger and
Isaksen’s hypercover theorem.

Similarly, if E → B is a topological principal G bundle, then u∗E → u∗B is a principal u∗G bundle in Diff 0, so that B is a homotopy
quotient of E. This fact is often invoked without comment; classical proofs don’t seem to be well-known (e.g., [May75, §7 & §8]) and are
very technical.

F: Homotopical calculi on differentiable sheaves
Let A be a closed smooth manifold, and X, any smooth manifold without boundary, then Diff∞(A,X) admits the structure of a Fréchet
manifold — equivalent to the internal mapping sheaf Diff∞(A,X) — and it is a folk theorem that Diff∞(A,X)models S(π!A, π!X). The shape
functor π! : Diffr → S preserves finite products, so that for any sheaves A,X we obtain a comparison map π!Diff∞(A,X) → S(π!A, π!X); we
prove the following generalisation of [BEBP19, Th. 1.1]:

Theorem (C.). Let A be a nice, possibly infinite dimension, manifold1, and X any sheaf, then π!Diff∞(A,X) → S(π!A, π!X) is an iso-
morphism.

Call A formally cofibrant if π!Diff∞(A,X) → S(π!A, π!X) is an isomorphism for all X, then the proof idea is as follows: Let S → D be a
map between formally cofibrant objects such that Diff∞(D,X) → Diff∞(S,X) is sharp for all X, then for any “attaching” map f : S → A
the pushout A ∪f D is also formally cofibrant. Moreover, any sheaf which is R-homotopy equivalent to a formally cofibrant sheaf is itself
formally cofibrant; in particular, any R-contractible sheaf is formally cofibrant. Kihara endows the simplices ∆n with a non-standard
smooth structure which coincides with the usual smooth structure on ∆̊n, but for which the horn inclusions Λn

i ↪→ ∆n admit retracts.
The goal is then to show that the morphism Diff∞(∆n, X) → Diff∞(∂∆n, X) is sharp for all X, and that any nice manifold is R-homotopy
equivalent to a simplicial complex built from Kihara’s simplices. Given E1, one might be tempted to show that the above morphism is
sharp by showing it is a fibration in the model structure transferred using Kihara’s simplices; unfortunately, this is equivalent to showing
that this model structures is Cartesian which is false. Instead, using the cube category one can construct a functor → Pro(Diff r), which
induces a fibration structure in which the above morphism is indeed sharp.
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Fig: Combining differential 
geometry and topos theory
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