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Introduction

In a letter to J-P. Serre dated 9.8.1960 A. Grothendieck writes that he has discovered how to
associate to any smooth scheme X over an arbitrary field k a chain complex of commutative
pro-algebraic k-groups

0→ Jn → · · · → J1 → J0 → 0

such that for any commutative algebraic k-group G there is a canonical isomorphismH i(X,G) ∼=
H i(Hom(J∗, G)) for all i ≥ 0 (see [CS01, p. 109]). He only provides a brief sketch of how this is
to be achieved. In this master thesis we give a complete construction of this chain complex; we
call it the pro-algebraic resolution of X. We only assume that X is regular and connected, but
we make the extra assumption that k is algebraically closed of characteristic 0.
This master thesis is organised into two parts: Part I contains the preliminaries and Part II the
actual construction of the pro-algebraic resolution.
Part I comprises Chapters 1 - 3. Given any category one may form its so-called pro-completion;
this is a new category, which in conceptual terms is obtained by formally adding all filtered
limits (these do in general not coincide with the filtered limits already present in the given
category); this is a useful way of enlarging a category, which we will use in Part II to enlarge
the category AGSk of commutative algebraic k-groups. We discuss pro-completions in Chapter
1. In the second chapter we discuss group schemes over k, with an emphasis on the following
three points: Firstly, we will see that various subcategories of the category of commutative k-
groups are Abelian. Secondly, we give a detailed account of the structure theory of commutative
algebraic k-groups; this will be important for reducing all the proofs in Part II to certain special
cases. Finally, we discuss Abelian sheaves represented by commutative k-groups. In the third
chapter we discuss local cohomology; special attention is given to the local cohomology of local
rings as well as the so called Cousin-complex of flasque sheaves; these are the technical tools
which form the core of Chapter 4 in Part II.
Part II consists of Chapters 4 & 5. For every commutative algebraic k-group G we denote by GX
the Abelian sheafX ⊇ U 7→ Schk(U,G); the groupsH i(X,G) (i ≥ 0) are the cohomology groups
of this sheaf. We would like to find a chain complex J∗ of commutative algebraic k-group from
which we can recover these cohomology groups, as described above; unfortunately the category
AGSk is not big enough to contain the constituent groups of such a chain complex, which is
why we must consider its pro-completion. The construction of the pro-algebraic resolution of
a connected regular scheme consists of two main steps corresponding to Chapters 4 & 5. In
Chapter 4 we show that for each commutative algebraic k-group G the sheaf GX satisfies the
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so-called Cohen-Macaulay condition; this allows us to apply the theory developed in §3.2.3 to
functorially associate to every commutative algebraic k-group G a flasque resolution C∗X,G of
GX called the Cousin resolution of GX . In the second step, discussed in Chapter 5, we show
that the functor AGSk → Ab given by G 7→ Γ(X,CiX,G) is pro-representable for every i ≥ 0.
The first step itself splits into two intermediate steps: In §4.1 we show that checking that GX
is Cohen-Macaulay for every G ∈ AGSk may be reduced to showing that for every x ∈ X the
local cohomology groups H i

{x}(Spec OX,x, G) vanish for i 6= htx. The second step, discussed in
§4.2, consists in proving that this is indeed the case.
In his letter Grothendieck furthermore makes certain assertions about the structure of the k-
groups Ji, notably he claims that they are connected and affine for i ≥ 1, and unipotent for
i ≥ 2. We prove this in §5.2.
At this point we would like to alert the reader to the following potential source of confusion: Even
though the category AGSk is Abelian and the functor AGSk → Ab given by G 7→ Schk(X,G)

is left exact, the functor G 7→ H i
X(X,G) is not its derived functor.

Prerequisites

We are assuming competence in basic category theory and homological algebra, as may be
found in [Mac98, Ch. I-V & §X.3] and [Sch11b, Ch. 3 & 4] respectively; in particular, we
are assuming the reader to be very comfortable with Yoneda’s lemma and group objects. We
will use some basic sheaf theory on topological spaces in the scope of [MM92, Ch. II] as well
as sheaf cohomology on topological spaces; the latter only requires knowledge pertaining to
general homological algebra and the fact that one may calculate sheaf cohomology using flasque
resolutions. We also require some rudimentary knowledge of Grothendieck topologies, sheaves on
sites, and the cohomology of such sheaves; the material found in [Mil80, Ch. I-III] is more than
enough. Finally, rather little algebraic geometry is needed: The main prerequisites correspond
to the material in [GW10, Ch. 2-5 & §6.11] and a very superficial understanding of the rest of
[GW10].
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Conventions and notation

Linguistic conventions

In order to facilitate visual recognisability we use the following contractions:

• We write “iff” instead of “if and only if”.

• We write “w.l.o.g.” instead of “without loss of generality”.

• We write “w.r.t.” instead of “with respect to’.

Editorial conventions

• Propositions stated without proof are marked with the symbol 2.

Set theory

• We fix a universe U. We call a category C small if its sets of objects and morphisms belong
to U and essentially small if it is equivalent to a small category. From now on we use the
term category to mean a category whose hom-sets all belong to U and we use the term
large category to speak of categories with arbitrary hom-sets.

• We will generally assume that any set encountered in this thesis except for sets of objects
of categories belongs to U. We will only need this level of set theoretical precision in
Chapter 1 and in the proof of Theorem 5.1.1.

Algebra

• All rings are unitary and commutative (and belong to U).

• The comultiplication homomorphism of any Hopf algebra is always denoted by ∆.

Category theory

• Let C be a (possibly large) category and let X,Y ∈ C be two objects, then the set of
morphisms from X to Y is denoted by C(X,Y ).

• We use the following notation for various categories (some of these will be defined formally
in the text).
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– Set denotes the category of sets in U.

– Setfin denotes the category of finite sets in U.

– Cat denotes the large 2-category of categories.

– Grp denotes the category of groups in U.

– Grpfp denotes the category of finitely presented groups in U.

– Ab denotes the category of Abelian groups in U.

– Top denotes the category of topological spaces in U.

– For any topological space X in U we denote by OuvX the category of open sets of
X.

– Let k be a ring, then Algk denotes the category of algebras over k in U.

– Let k be a ring, then Algfp
k denotes the category of finitely presented algebras over k

in U.

– Let (X,OX) be a ringed space in U, then ModOX
denotes the category of OX -modules

in U.

– Let k be a ring, then Affk denotes the category of affine k-schemes in U.

– Let S be a scheme in U, then SchS denotes the category of S-schemes in U.

– Let k be a field, then AGSk denotes the category of algebraic k-groups in U.

– Let k be a field, then AAGSk denotes the category of affine algebraic k-groups in U.

– Let k be a field, then PAGSk denotes the pro-completion of the category of algebraic
k-groups in U.

– Let k be a field, then PAAGSk denotes the category of affine k-groups in U.

• Let C be a category, then a contravariant functor Cop → Set is called a presheaf on C and
the category of presheaves on C is denoted by Ĉ. Dually, a covariant functor C → Set

is called a copresheaf and the opposite category of the category of coprosheaves on C is
denoted by qC.

• The functorょC : C ↪→ Ĉ (or simplyょwhen C is clear from context) denotes the Yoneda
embedding. The functorこC : C ↪→ qC (or simplyこ when C is clear from context) denotes
the co-Yoneda embedding. We will often view C as a subcategory of Ĉ and qC.

• A functor is called left (right) exact if it commutes with all finite limits (colimits). Warning:
This definition is less general than the one used in [KS06] (which we cite heavily); the two
definitions agree if the domain category admits finite limits (colimits).

• Let C be a category, then Grp(C) denotes the category of group objects in C and CoGrp(C)

denotes the category of cogroup objects in C.

• If a category admits an initial object, this object will denoted by ∅, and if the category
admits a final object, this object will be denoted by 1.
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Sheaf theory

• By an Abelian sheaf we mean a sheaf of Abelian groups.

• Let X be a topological space, then the category of presheaves and the category of sheaves
on X are denoted by PShX and ShX respectively; we will use this notation both for
(pre-)sheaves of sets and for Abelian (pre-)sheaves, with the correct interpretation being
clear from context. Furthermore PShsX and PShfX denote the categories of separated and
flasque presheaves on X respectively.

• Let (C, J) be a site, then the category of sheaves on (C, J) is denoted by C̃J .

Algebraic geometry

• Let k be a ring in U, then we denote by O : Schop
k → Affk the functor which assigns to

any k-scheme the k-algebra Γ(X,OX).
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Preliminaries
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Chapter 1

Pro-completions

Given a category C, then, conceptually speaking, its pro-completion is the category obtained
by formally adjoining all filtered limits to C and its ind-completion is the category obtained by
formally adjoining all filtered colimits. These “adjoined” filtered (co-)limits rarely coincide with
any filtered (co-)limits already present in C (see [KS06, §6.2]).
There are (at least) two reasons why it may be useful to consider pro- and ind-completions.
Sometimes a category does not have “enough” objects and its pro- or ind-completion is a good
way of enlarging it; sometimes this enlarged version itself admits a concrete description (see
Example 1.2.4). In other cases it may turn out that a category under consideration is the pro-
or ind-completion of a category satisfying certain properties, from which one may in turn infer
certain properties of the given category, e.g. the ind-completion of an essentially small category
admitting finite colimits is both well-powered and co-well-powered and admits both small limits
and colimits (see [KS06, Prop. 6.1.18.iii] and [AR94, Rm. 1.56]); these are strong properties, e.g.
a functor from such a category to any other category has a right adjoint iff it commutes with
small colimits (see [Mac98, p. 130]).
This chapter is one of the only places in this thesis where it is important that we distinguish
between small and large categories; the reader may want to quickly review our set theoretical
conventions on Page v.
Finally we note that the title of this chapter is a bit misleading as we will mainly consider
ind-completions (except in the very last subsection), as these are somewhat less fiddly to work
with.
The standard reference for the material in this chapter is [KS06, Ch. 6].

1.1 Basic definitions and properties

1.1.1 Categories of presheaves

In order to understand ind- and pro-completions we must first better understand (large) cate-
gories of presheaves and copresheaves. These categories will also serve as prototypes of ind- and
pro-completions. Throughout this section C denotes a category.
We will only work with Ĉ, as all analogous statements pertaining to qC may be obtained by
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considering the appropriate opposite categories.
We wish to show now that if C is small, then Ĉ may be thought of as the category obtained
by formally adjoining all colimits to C and qC as the category obtained by formally adjoining all
limits to C.

Notation 1.1.1. Let I be a small category and let A : I → C be a functor, then we write
“ lim−→ ”A for the colimit ofょ◦A, and similarly we write “ lim←− ”A for the limit ofこ◦A. y

Let F be a presheaf on C and denote by CF the slice category of C over F , that is, the category
whose objects are pairs (X, η), where X is an object in C and η is a natural transformation
C( , X)→ F , and whose morphisms (X1, η1)→ (X2, η2) are morphisms X1 → X2 in C making
the resulting triangle

C( , X1) C( , X2)

F

η1 η2

commute1. The functor of F then forms the vertex of the cocone

{η : C( , X)⇒ F}(X,η)∈CF
. (1.1)

Proposition 1.1.2. [Mac98, Th. III.7.1] For any presheaf F on C the cocone (1.1) is univesal,
i.e. there is a canonical isomorphism

F ∼= “ lim−→ ”(CF → C).

Remark 1.1.3. The (large) category Ĉ does not contain all colimits, only all small colimits. It
is thus not true a priori that the colimit of CF → Ĉ exists. y

Proposition 1.1.4. Assume that C is small and let A be a category containing all small colimits,
then for any functor F : C→ A there exists a pair consisting of a functor F̂ : Ĉ→ A commuting
with all small colimits together with a natural isomorphism F ⇒ F̂ ◦ょ; this pair is unique up to
natural isomorphism, that is, for any other pair consisting of a functor Ĝ : Ĉ → A commuting
with all small colimits together with a natural isomorphism F ⇒ Ĝ ◦ょ, there exists a unique
natural isomorphism F̂ ⇒ Ĝ such that the resulting triangle

F̂ ◦ょ Ĝ ◦ょ

F

commutes.

1Incidentally, the category CF is canonically isomorphic to the category of elements of F .
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Idea of proof. The pair (F̂ , η) is simply the left Kan extension of F : C → A alongょ : C ↪→ Ĉ,
and one has to show that F̂ commutes with colimits and that η is an isomorphism. For details
see [KS06, Prop. 2.7.1].

We finish by stating an important property of representable functors in categories of presheaves.

Proposition 1.1.5. For any object X ∈ C the functor Ĉ(ょ(X), ) : Ĉ → Set commutes with
small colimits.

Proof. Let I be a small category and let A : I → Ĉ be a functor, then we have the following
canonical isomorphisms

Ĉ(ょ(X), lim−→
i∈I

Ai) ∼= (lim−→
i∈I

Ai)(X) ∼= lim−→
i∈I

Ai(X) ∼= lim−→
i∈I

Ĉ(ょ(X), Ai),

where the first and the last isomorphisms are due to Yoneda’s lemma, and the second to the
fact that colimits in categories of functors may be computed objectwise.

1.1.2 Pro-completions

Definition 1.1.6.

1. An ind-object in C or an ind-representable object in Ĉ is an object in Ĉ which is isomorphic
to “ lim−→ ”A for some functor A from a small filtered category to C.

2. We denote by Ind(C) the full subcategory of Ĉ spanned by ind-objects in C and call it the
ind-completion of C.

3. A pro-object in C or a pro-representable object in qC is an object in qC which is isomorphic
to “ lim←− ”A for some functor A from a small cofiltered category to C.

4. We denote by Pro(C) the full subcategory of qC spanned by pro-objects in C and call it the
pro-completion of C.

y

We see that the ind-completion of a category is similar to its (large) category of presheaves.
We begin by citing an immediate advantage of its ind-completions over its (large) category of
presheaves.

Proposition 1.1.7. Ind(C) is a category, i.e. its hom-sets belong to U. y

Proof. Let I and J be filtered categories, let A : I→ C and B : J→ C be two functors, then we
have

Ind(C)(“ lim−→ ”A, “ lim−→ ”B) = Ĉ(“ lim−→ ”A, “ lim−→ ”B)

∼= lim←−
i∈I

Ĉ(ょ(A(i)), “ lim−→ ”B)

∼= lim←−
i∈I

lim−→
j∈J

C(ょ(A(i)),ょ(B(j))),
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where the penultimate isomorphism is due to the universal property of colimits and the last
isomorphism follows from Proposition 1.1.5.

Proposition 1.1.8. [KS06, Th. 6.1.8] The category Ind(C) admits small filtered colimits and
the canonical functor Ind(C) ↪→ Ĉ commutes with such colimits.

The ind-completion of a category satisfies an analogous universal property as the category
of presheaves of a small category.

Proposition 1.1.9. Let A be a category containing all small filtered colimits, then for any
functor F : C → A there exists a pair consisting of a functor F ′ : Ind(C) → A commuting with
all small filtered colimits together with a natural isomorphism F ⇒ F ′ ◦ょ; this pair is unique
up to natural isomorphism, that is, for any other pair consisting of a functor G′ : Ind(C) → A

commuting with all small filtered colimits together with a natural isomorphism F ⇒ G′ ◦ょ there
exists a unique natural isomorphism F ′ ⇒ G′ such that the resulting triangle

F ′ ◦ょ G′ ◦ょ

F

commutes.

Idea of proof. The idea of the proof is the same as for the proof of Proposition 1.1.4. For details
see [KS06, Cor. 6.3.2].

We now give a different characterisation of the presheaves on C which belong to Ind(C),
provided that C contains finite colimits. Any representable presheaf on C obviously takes small
colimits in C to small limits; this is no longer true for a presheaf in Ind(C), but such a presheaf
is still left exact, that is, it takes finite colimits to finite limits. This is easily verified: Let I

be a small filtered category and K a finite category, and consider two functors A : I → C and
F : K→ C, then we have the following sequence of canonical isomorphisms:

Ind(C)(lim−→F, “ lim−→ ”A) ∼= lim−→
i∈I

C(lim−→F,A(i))

∼= lim−→
i∈I

lim←−
k∈K

C(F (k), A(i))

∼= lim←−
k∈K

lim−→
i∈I

C(F (k), A(i))

∼= lim←−
k∈K

Ind(C)(F (k), “ lim−→ ”A),

where the first and the last isomorphisms follow from Proposition 1.1.5, the second isomorphism
is due to the universal property of colimits, and the third is due to the fact that filtered colimits
commute with filtered limits in Set (see [KS06, Th. 3.1.6]). It turns out that the converse is
almost true.
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Proposition 1.1.10. [KS06, Prop. 6.1.7] Assume that C admits finite colimits, then a presheaf
F on C is ind-representable iff it is left exact and CF is cofinally small.

Corollary 1.1.11. If C is essentially small and admits small colimits, then a presheaf F on C

is Ind-representable iff is left exact.

Remark 1.1.12. There is a well developed theory of categories which satisfy smallness conditions
similar to that of being the ind-completions of an essentially small category. See [AR94] for a
very readable introduction. y

1.1.3 The relationship between (co-)limits in C and Pro(C)

We have already seen in Proposition 1.1.8 that Ind(C) admits all filtered colimits. It turns out
that the other types of limits and colimits which are admitted by Ind(C) depend on the types
of limits and colimits admitted by C. We summarise these dependencies which are scattered
throughout [KS06, §6.1] in the following table:

If C admits then Ind(C) admits
finite limits finite limits.
small limits small limits.
coequalisers coequalisers.
finite coproducts small coproducts.
finite colimits small colimits.

(1.2)

Furthermore we have the following proposition:

Proposition 1.1.13. The canonical embedding C ↪→ Ind(C) is exact.

Proof. The canonical embedding C ↪→ Ind(C) commutes with small limits becauseょ : C ↪→ Ĉ

does. For right exactness see [KS06, Cor. 6.1.6].

1.1.4 Characterising pro-completions

We saw in Proposition 1.1.5 that for any presheaf F on the category C the corresponding presheaf
Ĉ(F, ) on Ĉ commutes with small colimits if F is representable. We now discuss a class of objects
in any category admitting finite limits which satisfy a similar property.

Definition 1.1.14. Assume that C admits small filtered limits, then an object X ∈ C is called
compact if for any filtered category I and any functor A : I→ C the canonical map

lim−→C(X,A)→ C(X, lim−→A)

is an isomorphism. y

As the term “compact” suggests, compact objects are “small” in an appropriate sense; it is
easily checked that a necessary condition for X ∈ C to be compact is that for any small filtered
category I and any functor A : I → C every morphism X → lim−→A factors through a morphism
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A(i)→ lim−→A for some i ∈ I.
We only give one example of compact objects right now, deferring further examples to §1.2.

Example 1.1.15. Let X be a topological space, then an open set in OuvX is compact in the
sense of Definition 1.1.14 iff it is compact in the topological sense. This is not hard to check, so
we leave it as an exercise. y

Recall that Ind(C) admits all small filtered colimits (see Proposition 1.1.8). We see by Pro-
position 1.1.5 that the objects in C are compact in Ind(C) and so that by definition every object
in Ind(C) is a filtered colimit of compact objects. As a corollary of the following proposition we
obtain a converse in a certain sense.

Proposition 1.1.16. [KS06, Prop. 6.3.4] Let P be a category and F : P→ C a functor. If

(a) C admits small filtered colimits,

(b) F is fully faithful, and

(c) any object in the (essential) image of F is compact,

then the functor Ind(P)→ C obtained by the universal property of P→ Ind(P) (see Proposition
1.1.9) is fully faithful.

Corollary 1.1.17. Denote by Cc the full subcategory of C spanned by compact objects. If C

admits all small filtered colimits and if every object in C is the small filtered colimit of compact
objects then the canonical functor

Ind(Cc)→ C

is an equivalence of categories.

Proof. By the previous proposition the functor is fully faithful. As the functor commutes with
filtered colimits, it is also essentially surjective by assumption.

Remark 1.1.18. While all objects in C are compact in Ind(C) the converse is true iff C is idem-
potent complete (see [KS06, Exercise 6.1]). Many examples of categories are idempotent com-
plete, as a sufficient condition is to admit equalisers or coequalisers; in particular, all examples
considered in this chapter are idempotent complete. y

1.2 Examples

In this section we study examples of pro- and ind-completions of various categories. All charac-
terisations of pro- and ind-completions in the following examples may be obtained by applying
Corollary 1.1.17.

Example 1.2.1. The compact objects in Set are exactly the finite sets, so that Set is the
ind-completion of Setfin. This is easily verified and left as an exercise. y
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Example 1.2.2. Let k-be a ring, then the compact objects in Algk are exactly the finitely
presented k-algebras, so that Algk is the ind-completion of Algfp

k . This is also easily verified
and left as an exercise. y

Remark 1.2.3. The result in the previous two examples holds in much greater generality: In any
variety of algebras, the compact objects are exactly the finitely presented algebras (see [AR94,
Cor. 1.3]). Thus this result is true for example for the category of groups or the category of
modules over a ring. y

Example 1.2.4. The pro-completion of Setfin is equivalent to the category of totally discon-
nected compact Hausdorff spaces; such spaces are called profinite topological spaces. y

1.3 Algebraic structures in pro-completions

As we will be discussing pro-algebraic k-groups, we need to understand how group structures in
a category and pro-completions interact. We will, as usual, consider the somewhat easier dual
structures, that is, ind-completions and cogroup objects.

Lemma 1.3.1. Assume that C admits finite coproducts. Let I be a small category, let
F : I → CoGrp(C) be a functor, and assume that the colimit of the composition of F with
the forgetful functor CoGrp(C) → C exists, then the colimit of F exists and is given by lim−→F

with the cocomposition, counit and coinverse morphisms induced by the universal property of
colimits.

Sketch of proof. All the properties characterising lim−→F together with the induced morphisms
lim−→F → lim−→F t lim−→F and lim−→F → ∅ as a cogroup object may be checked using the universal
property of lim−→F (in C). We will show the commutativity of the diagram expressing that the
counit morphism indeed acts as a counit, which is the least trivial part of the proof, and leave
the rest to the reader. For every i ∈ I consider the diagram

lim−→F lim−→F t lim−→F ∅ t lim−→F lim−→F

F (i) F (i) t F (i) ∅ t F (i) F (i),

then we must show that composition of the leftmost two arrows in the top row is equal to the
canonical morphism lim−→F → ∅ t lim−→F . This is equivalent to showing that the composition of
the leftmost two arrows in the top row with the canonical morphism F (i)→ lim−→F is equal to the
morphism obtained by composing F (i)→ lim−→F and lim−→F (i)→ ∅t lim−→F , but this follows from
the commutativity of the three squares in the above diagram and the fact that the composition
of the bottom three arrows is equal to id : F (i)→ F (i).

Corollary 1.3.2. If C admits colimits indexed by a category I, then so does CoGrp(C).

As the functor C ↪→ Ind(C) is right exact (see Proposition 1.1.13) it induces a functor
CoGrp(C) → CoGrp(Ind(C)). By Corollary 1.3.2 the category CoGrp(Ind(C)) admits filtered
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colimits so by the universal property of CoGrp(C)→ Ind(CoGrp(C)) (see Proposition 1.1.9) we
obtain the canonical functor

Ind(CoGrp(C))→ CoGrp(Ind(C)). (1.3)

Proposition 1.3.3. The functor (1.3) is fully faithful.

Proof. As C → Ind(C) is fully faithful, so is CoGrp(C) → CoGrp(Ind(C)); therefore, by Co-
rollary 1.3.2 and Propositions 1.1.16 we only need to show that the objects of CoGrp(C)

are compact in CoGrp(Ind(C)). Let I be a small filtered category and consider a functor
A : I → CoGrp(Ind(C)), then for any object X ∈ CoGrp(C) we must show that the canon-
ical map lim−→CoGrp(Ind(C))(X,A) → CoGrp(Ind(C))(X, “ lim−→ ”A) is a bijection. Injectivity
follows directly from the compactness of X in Ind(C); surjectivity requires a little bit more
care. Again by the compactness of X in Ind(C) every morphism X → lim−→A factors through
A(i) → lim−→A for some object i ∈ I; the resulting morphism X → A(i) is however not a priori
a morphism of cogroup objects in Ind(C). The morphism A(i) tA(i)→ lim−→A t lim−→A equalises
the two morphisms from X to A(i) t A(i) in (1.4), so by the compactness of X there exists
a morphism i → j in I such that A(i) t A(i) → A(j) t A(j) equalises these two morphisms.
It is now straightforward to check using (1.4) that the morphism X → A(j) is a morphism of
cogroup objects.

X tX

lim−→A t lim−→A

lim−→A

X

A(i) tA(i)

A(j) tA(j)

A(j)

A(i)

(1.4)

Remark 1.3.4. Note that Proposition 1.3.3 tells us that every object in Ind(CoGrp(C)) may
be viewed as a cogroup object, namely in Ind(C). We are not aware whether every object in
CoGrp(Ind(C)) may be viewed as the formal filtered colimit of cogroup objects in C, that is
whether the functor (1.3) is an equivalence categories. Any X ∈ CoGrp(Ind(C)) is by construc-
tion the filtered colimits of objects in C; one would have to show that there exists a filtered
category I and functor A : I → C such that X ∼= “ lim−→ ”A, and moreover A factors through the
forgetful functor CoGrp(C) → C. We have been able to show this to be the case in all but one
of the examples presented in the following subsection, but always for very specific reasons: In
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Examples 1.3.5 - 1.3.8 the proof that every cogroup object in Ind(C) (Pro(C)) is isomorphic to
the filtered colimit (limit) of compact cogroup objects relies heavily on the concrete structure
of cogroup objects in Ind(C) (Pro(C)); in Example 1.3.10 one uses the fact that in this case
the forgetful functor CoGrp(C) → C is an isomorphism. Thus these examples do not seem to
indicate that (1.3) ought to be an equivalence a priori. y

1.3.1 Examples

Example 1.3.5. The only object in Set with the structure of a cogroup object is the empty set,
because the only set with a map to the empty set is the empty set itself, so only the empty set
may have a counit morphism. The comultiplication and coinverse maps are uniquely determined
and are readily seen to satisfy the axioms of a cogroup object. Setting C = Setfin we see that
(1.3) is an isomorphism of categories as it is the unique functor from the category containing
one object and one morphism to itself. y

Example 1.3.6. [Kan58, §3] The cogroup objects in Grp are free groups, and any choice of
free basis for a free group uniquely determines the structure of a cogroup object. Let X be
a set, F (X) the corresponding free group, and j1, j2 : F (X) → F (X) ∗ F (X) ∼= F (X t X)

the canonical injections, then the comultiplication homomorphism on F (X) is determined by
sending any x ∈ X to j1(x) · j2(x), the coinverse homomorphism is determined by sending any
x ∈ X to x−1, the counit homomorphism is the unique homomorphism F (X)→ 1. By Remark
1.2.3 the compact objects in Grp are exactly the finitely presented groups, and it is easily seen
that F (X) is finitely presented iff X is finite. The cogroup object F (X) is the colimit of all
sub-cogroup-objects of the form F (X ′), where X ′ is a finite subset of X, so we see that (1.3) is
an equivalence of categories if we set C = Grpfp. y

Example 1.3.7. [Mil12, Th. 8.2] Let k be a field and let A be a Hopf k-algebra, then, using
representation theory of Hopf k-algebras, one may show that every finite subset of A is contained
in a finitely generated (as a k-algebra) Hopf k-subalgebra of A. Thus A is the union of all its
finitely generated (as k-algebras) Hopf k-subalgebras, and it is straightforward to check that A is
the colimit over the resulting diagram of Hopf k-subalgebras. As k is Noetherian, the notions of
finitely presented and finitely generated k-algebras coincide, and we see that if we set C = Algk,
then (1.3) is an equivalence of categories. y

Example 1.3.8. A profinite group is a topological group whose underlying topological space is
profinite (i.e. totally disconnected and compact; see Example 1.1.17). By [Sha72, Th. 1.1.2] every
profinite group is the filtered limit of its finite quotients, so we see that (1.3) is an equivalence
of categories for C = Setfin.
Profinite groups have important applications. Let k be a field and let k ↪→ K be a Galois
extension; if k ↪→ K is infinite, then Autk(K) is no longer the correct object with which to do
Galois theory, as not all subgroups of Autk(K) correspond to subextensions of k ↪→ K; instead
one considers the profinite group obtained as the filtered colimits of all Galois groups of all finite
subextensions of k ↪→ K. Viewing this pro-object as a topological group one may verify that its
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underlying group is in fact Autk(K), but only closed subgroups correspond to subextensions.
For detailed expositions see [BJ01, §3] and [Sza09, §1]. y

Example 1.3.9. [Fau08, Cor. A.3] Similarly to the previous example, the pro-completion of
the category of compact Lie groups is equivalent to the category of compact Hausdorff groups.
We are unaware whether (1.3) is an equivalence of categories if we take C to be the category of
compact, r times differentiable manifolds, where r ∈ N ∪ {∞} ∪ {ω}. y

Example 1.3.10. The functor (1.3) is an equivalence of categories if C is an additive category2.
This follows from the fact that in this case the forgetful functor CoGrp(C)→ C is an isomorphism
of categories. y

1.4 Pro-completions of Abelian categories

Throughout this section A denotes an Abelian category. We will show that Ind(A) is again
Abelian. This is done in two steps: First we show that Ind(A) is a subcategory of the (large)
Abelian category of Abelian additive presheaves on A; by Table (1.2) we see that Ind(A) admits
finite limits and small colimits, so that Ind(A) is additive; we then only have to show that
Ind(A) satisfies AB 2) (see [Gro57, §1.3]). We begin with three lemmas.

Lemma 1.4.1. [KS06, Prop. 8.2.15] A functor between additive categories is additive iff it
commutes with finite products (or equivalently with finite coproducts).

Lemma 1.4.2. Every presheaf on A which commutes with finite coproducts factors uniquely
through the forgetful functor U : Ab→ Set.

Proof. Let F be a presheaf on A which commutes with finite coproducts, then any object X ∈ A

has the unique structure of a co-Abelian cogroup with comultiplication

X

idX

idX


−−−−→ X ⊕X, (1.5)

which induces the structure of an Abelian group on F (X), so we see that F factors through
U : Ab → Set. To see uniqueness we must check that for any other additive functor
F ′ : Aop → Ab such that F = U ◦ F ′, the structure of an Abelian group object on F ′(X)

induced by (1.5) coincides with the Abelian group structure already present on F ′(X). The
functor F ′ commutes with products because U ◦ F ′ does and because U is conservative, so that

F ′ takes (1.5) to F ′(X) ⊕ F ′(X)
[idF ′(X) idF ′(X)]−−−−−−−−−−→ F ′(X), which is the multiplication map of the

group structure on F (X) determined by F .

Lemma 1.4.3. Let P1, P2 be two contravariant functors from A to Ab which commute with
finite products, and denote by U : Ab→ Set the forgetful functor, then the canonical map

Cat(A,Ab)(P1, P2)→ Cat(A,Set)(U ◦ P1, U ◦ P2) (1.6)
2Note that being an additive category is a property, not additional structure.
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is a bijection.

Proof. Because U : Ab→ Set is faithful, the map (1.6) is injective. To see that it is surjective,
let η be a natural transformation U ◦ P1 ⇒ U ◦ P2. Showing that for every object X ∈ A the
map ηX : U ◦P1(X)→ U ◦P2(X) is a homomorphism of Abelian groups is the same as showing
that for every object X ∈ A the diagram

U ◦ P1(X)× U ◦ P1(X) U ◦ P2(X)× U ◦ P2(X)

U ◦ P1(X) U ◦ P2(X)

ηX×ηX

ηX

commutes, where the vertical maps are the multiplication maps. But, as both U ◦P1 and U ◦P2

commute with finite products, the above diagram commutes by naturality.

Putting these lemmas together we immediately see that the Abelian category of additive
contravariant functors from A to Ab is canonically isomorphic to the category of presheaves on
A which take finite coproducts to finite products; we denote this category by Âadd. We thus
have canonical embeddings

A ↪→ Ind(A) ↪→ Âadd.

Theorem 1.4.4. The category Ind(A) is Abelian.

Proof. By the explanation in the introduction of this section we only have to show that Ind(A)

satisfies AB 2) (see [Gro57, §1.3]); this is shown in [KS06, Th. 8.6.5].

Remark 1.4.5. Let A be a commutative ring, then the category Modfp
A of finitely presented

A-modules is Abelian iff A is Noetherian, however Ind(Modfp
A ) ∼= ModA is always Abelian (see

Example 1.2.2), so we have seen another way in which the ind-construction may “improve” a
category. This idea is explored in detail in [Sch12]. y

Proposition 1.4.6. [KS06, Th. 8.6.5.vi] If A is essentially small, then Ind(A) is a Grothendieck
category.

Proposition 1.4.7. The compact objects in Ind(A) are exactly the objects in A.

Proof. By Remark 1.1.18 the statement is true iff A is idempotent complete, but this is true for
any Abelian category.

1.4.1 Pro-Artinian categories

We have already seen in Corollary 1.1.11 and Proposition 1.4.6 that if A is essentially small,
then Pro(A) is particularly nice. Here we will show that if the objects of A are furthermore
Artinian, then the objects in Pro(A) may be written as filtered limits in a canonical way.

Definition 1.4.8. An object X ∈ A is called Artinian if any descending chain of subobjects
stabilises, that is, if for any chain of monomorphisms

X ←↩ X0 ←↩ X1 ←↩ · · ·
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there exists a number N ∈ N such that for all i > N the morphisms Xi ←↩ Xi+1 are isomorph-
isms. y

Definition 1.4.9. An Abelian category is called Artinian if it is essentially small and all its
objects are Artinian. y

Definition 1.4.10. An Abelian category is called pro-Artinian if it is equivalent to the pro-
completion of an Artinian category. y

Remark 1.4.11. Abelian categories equivalent to pro-Artinian categories may also be charac-
terised intrinsically (see [DG70, §V.2.2.1]). This is not explained however in [DG70]; one can
deduce this from the results in [Gab62]. y

Proposition 1.4.12. [DG70, Th. V.2.3.1] Assume that A is Artinian, then the Artinian objects
in Pro(A) are exactly the objects in A.

Theorem 1.4.13. Assume that A is Artinian. Consider an object X ∈ Pro(A) and let {Xi} be
the directed set of all sub-objects of X such that X/Xi is compact, then the canonical morphism
X → lim←−X/Xi is an isomorphism.

Proof. Put together [Gab62, Prop. I.6.6.b], the discussion directly preceding [Gab62, Prop. II.3.7]
and [KS06, Ex. 5.2.2.iii].
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Chapter 2

Group Schemes

In this chapter we review the notion of group scheme, look at some basic constructions and then
focus on commutative group schemes. We will devleop a more extensive theory than what is
strictly required so that we may see how these facts needed later on fit into a wider picture;
in particular we will witness the remarkable fact that many subcategories of the category of
commutative k-schemes are Abelian.

2.1 Basic theory

2.1.1 Basic definitions and properties

Definition 2.1.1. Let S be a scheme, then a group scheme over S or an S-group is a group
object in the category of S-schemes. If S is isomorphic to the spectrum of a ring k, then we also
call such a group object a k-group. y

We will only consider group schemes over a field, though we wish to point out that many
of the concepts discussed bellow still make sense over more general base schemes (see [SGA3I],
[SGA3 II], [SGA3III]).
For the rest of this chapter k denotes a ring and p its characteristic. We begin by discussing two
basic properties of group schemes over a field.

Proposition 2.1.2. Assume that k is a field and let G be a k-group, then the unit morphism
Spec k → G is a closed immersion.

Proof. Denote by e the unit element of G. The unit morphism Spec k → SpecA has a left
inverse for every affine neighbourhood SpecA of e, so that the ring homomorphism A→ k has a
right inverse and is thus surjective. This shows that the unit morphism Spec k → G restricts to
a closed immersion for every affine open neighbourhood of e; as the property of being a closed
immersion is local on the target (see e.g. [EGA I, Cor. 4.2.4]) the proof is complete.

Corollary 2.1.3. Every group scheme over a field is separated1.
1This is not true for group schemes over an arbitrary base scheme; see [SGA3I, Ex. VIB 5.6.4].
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Proof. Let k be a field and let G be a k-group. Denote by ϕ : G×k G→ G the morphism given
by composing idG×( )−1 : G×k G→ G×k G with the multiplication morphism of G, then it is
straightforward to check that

G Spec k

G×k G G

∆

ϕ

is Cartesian, where the vertical morphism to the right is the unit morphism. As the property of
begin a closed immersion is stable under base change (see [GW10, Prop. 4.32.2]) we are done.

Definition 2.1.4. A k-group is called affine if its underlying k-scheme is affine2. y

Recall that a group object in a category C may equivalently be defined as an object G ∈ C

together with a multiplication morphism G × G → G, a unit morphism 1 → G and an inverse
morphism G → G satisfying certain properties, or as an object G ∈ C together with a factor-
isation of the presheaf C( , G) through the forgetful functor U : Grp → Set (see e.g. [Mac98,
III.6]). This provides two useful perspectives, the second of which may be modified as follows
in the context of k-schemes: The composition of the Yoneda embedding Schk ↪→ Ŝchk with the
functor Ŝchk → Âffk induced by the inclusion Affk ↪→ Schk is fully faithful. (This is discussed
in great detail in [DG70, §I.1]; for a quick proof see [EH00, Prop. VI-2].) This in turn means
that any k-scheme may be viewed as a copresheaf on Algk. Group schemes are often easiest to
describe as group valued functors on Algk. For affine k-groups there is a third perspective: the
anti-equivalence between affine k-schemes and k-algebras extends to an anti-equivalence between
affine k-groups and Hopf algebras over k.
Apart from affine group schemes we will focus on two more types of group schemes: Algebraic
and pro-algebraic group schemes.

Definition 2.1.5. If k is a field, then a group scheme over k is called (locally) algebraic if its
underlying scheme is (locally) algebraic. y

Recall that a scheme over a ring is called (locally) algebraic if its structure morphism is
(locally) of finite type or of finite presentation, depending on the author. For schemes over a
Noetherian ring (and in particular over a field) these two notions coincide. Some authors require
morphisms of finite type/presentation to be separated (see e.g. [DG70, Def. I.3.1.6]) while others
do not (see e.g. [EGA I, Def. 6.3.2]); by Corollary 2.1.3 this point is immaterial for group schemes
over a field.

Proposition 2.1.6. A locally algebraic k-group is smooth iff it is geometrically reduced. In
particular, if k is perfect, then a k-group is smooth iff it is reduced.

Proof. For the first statement see [GW10, Prop. 16.49]. The second statement follows from
the fact that if k is perfect, then a k-scheme which is locally of finite type is reduced iff it is
geometrically reduced (see [GW10, Cor. 5.57]).

2More generally, a group scheme over an arbitrary base scheme is called affine if the structure morphism is
affine.
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Theorem 2.1.7 (Cartier). [DG70, Th. II.6.1.1] Every locally algebraic group scheme over a field
of characteristic 0 is reduced; in other words, every locally algebraic group scheme over a field
of characteristic 0 is smooth.

Definition 2.1.8. If k is a field, then an object of the pro-completion of the category of algebraic
k-groups is called a pro-algebraic k-group. y

2.1.2 Constructions on group schemes

The only three constructions we will be interested in are products, subgroups and quotients.
Throughout this subsection k is assumed to be a field.

Products

Let C be a category admitting finite products, then Grp(C) admits finite products; indeed, the
product of two group valued functors is given objectwise, so the underlying object of the product
of two group objects is simply the product of the respective underlying objects. We thus see
that products exist in the category of (affine) group schemes over any base scheme.

Subgroups

Proposition 2.1.9. Let G and H be k-groups and let ϕ : G → H be a morphism of k-groups.
If G and H are both affine or both algebraic, then the following three properties are equivalent:

(I) The morphism ϕ : G→ H is a monomorphism in the category of k-groups.

(II) The morphism ϕ : G→ H is an immersion.

(III) The morphism ϕ : G→ H is a closed immersion.

If G and H are affine, the properties (I) - (III) are furthermore equivalent to

(IV) The homomorphism of Hopf algebras O(ϕ) : O(H)→ O(G) is surjective.

Proof. In both cases the implications (III) =⇒ (II) and (II) =⇒ (I) are clear. The proof
of (I) =⇒ (III) may be found in [DG70, Th. III.3.7.2.b] for affine k-groups, and in [DG70,
Prop. II.5.5.1.b] for algebraic k-groups. The proof of (I) ⇐⇒ (IV) may be found in [DG70,
Th. III.3.7.2.b].

Definition 2.1.10. A k-subgroup, or simply subgroup, is a morphism of affine or algebraic
k-groups satisfying the equivalent properties in Proposition 2.1.9. y

Convention 2.1.11. LetH ↪→ G be a k-subgroup, then we will often refer to H as a k-subgroup
of G. y

Proposition 2.1.12. Any k-subgroup of an algebraic k-group is algebraic and any k-subgroup
of an affine k-group is affine.

Corollary 2.1.13. Subgroups of commutative affine or algebraic k-groups are commutative.

Proof. Let G ↪→ H be a subgroup, then for every k-algebra A the map G(A) → H(A) is a
monomorphism, so that G(A) has the structure of an Abelian group.
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Quotients

Definition 2.1.14. Let G be a k-group and X a k-scheme, then a morphism G × X → X is
called a (left) action of G on X if for every k-scheme S the map G(S) × X(S) → X(S) is a
(left) action of G(S) on X(S). y

Definition 2.1.15. Let G be a k-group, let X be a k-scheme, and let α : G ×X → X be an
action of G on X. If it exists, the coequaliser of the diagram

G×X X,
p

α

where p denotes the projection morphism, is called the quotient of X by α, or if α is understood
from context, the quotient of X by G. y

Let H ↪→ G be a k-subgroup, then there is a canonical action H × G → G given by
(h, g) 7→ hg. If it exists we will thus speak of the quotient of G by H.
In certain cases the existence of the quotient of a k-scheme by a k-group may be proved by giving
a rather explicit construction (see e.g. [DG70, Cor. III.2.6.1]), however, in the situation we are
interested in, that is, quotients by subgroups, the most common approach is to work with fppf
sheaves. As the fppf topology is subcanonical, any k-group may be viewed as a (group-valued)
fppf sheaf and any k-subgroup may then be viewed as a subsheaf. Let G be a k-group acting on
a k-scheme X, then the quotient sheaf exists; this is seen by first forming the quotient presheaf
(which exists because quotients of group actions exist in the category of sets), and then applying
the sheafification functor, which is exact. One then tries to prove that this quotient sheaf is
representable.

Theorem 2.1.16. Let G be a k-group and H a subgroup, then the quotient of G by H exists if
both groups are affine or if both groups are locally algebraic; these k-groups are again affine and
locally algebraic respectively.

Proof. The first assertion is proved in both [SGA3I, Th. VIB.11.17] and [DG70, Th. III.3.7.2],
and the second assertion is proved in [SGA3I, Th. VIA.3.2]3.

Proposition 2.1.17. [DG70, Th.III.3.7.2] A morphism of affine k-groups is a quotient iff the
corresponding homomorphism of Hopf k-algebras is injective iff it is faithfully flat.

Proposition 2.1.18. The quotient of a commutative algebraic or affine k-group is commutative.

Proof. Let G be a commutative algebraic or affine k-group and let H be a k-subgroup, then
the copresheaf on Algk given by A 7→ G(A)/H(A) is clearly commutative; as sheafification is
exact it takes commutative group objects to commutative group objects, so that the associated
fppf-sheaf is commutative, and thus also the k-group which represents it.

3In fact the statement is proved more generally for flat, locally algebraic groups over any Artinian ring.
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2.1.3 Examples

Example 2.1.19. The presheaf of groups

Schop
k → Grp

X 7→ O(X)+

(where A+ denotes the underlying Abelian group of any ring A) is represented by A1
k; this k-

group is called the additive k-group and is denoted by Gk,a, or simply Ga when no confusion
arises. The corresponding copresheaf of groups on Algk is then given by

Algk → Grp

A 7→ A+.

As it is particularly neat, we give the corresponding cogroup structure on k[X]:

k[X] → k[X1, X2] (multiplication)
X 7→ X1 +X2

k[X] → k (unit)
X 7→ 0

k[X] → k[X] (inverse)
X 7→ −X.

It is interesting to not only consider the presheaf represented by Ga on Schk but also on
Grp(Schk). The functor Grp(Schk)( ,Ga) : Grp(Schk)

op → Grp factors through the for-
getful functor Vectk → Grp, as it assigns to each affine k-group G the k-submodule of O(G)

given by {
f ∈ O(G) ∆(f) = 1⊗ f + f ⊗ 1

}
.

y

Example 2.1.20. The presheaf of groups

Schop
k → Grp

X 7→ O(X)×

is represented by A1
k \ {0}; this k-group is called the multiplicative k-group and is denoted by

Gk,m, or simply Gm when no confusion arises. The corresponding copresheaf of Algk is then
given by

Algk → Grp

A 7→ A×.

y

Example 2.1.21. Let G be a discrete topological group, and assume that k is Artinian, then

19



the presheaf of groups
Schop

k → Grp

(X,OX) 7→ Top(X,G)

is represented by
∐
g∈G Spec k. Such groups are called constant k-groups. y

Example 2.1.22. Assume that k is a field, then the copresheaf of groups

Algk → Grp

A 7→ GLn(A)

is represented by k[Xij ]det[Xij ]; the corresponding k-group is called the general linear k-group of
degree n and is denoted by GLn,k or simply by GLn when this causes no confusion. y

Affine algebraic k-groups are sometimes called linear k-groups due to the following proposi-
tion.

Proposition 2.1.23. [DG70, Cor. II.5.5.2] An algebraic k-group G is affine iff there exists a
positive integer n ∈ N and a monomorphism G ↪→ GLn.

Example 2.1.24. The copresheaf of groups

Algk → Grp

A 7→ SLn(A)

is represented by k[Xij ]/(det[Xij ] − 1); the corresponding k-group is called the special linear
k-group of degree n and is denoted by SLn,k or simply by SLn when this causes no confusion. y

Example 2.1.25. The subcopresheaf of GLn given by

Algk → Grp

A 7→
{

(aij) ∈ GLn(A) aij = 0 for i > j and aij = 1 for i = j
}

is representable by a subgroup of GLn which is denoted by Un,k or simply by Un if k is clear
from context. y

Example 2.1.26. The kernel of the morphism Gm → Gm determined by

k[X,X−1] → k[X,X−1]

X 7→ Xn

corresponds to the copresheaf of groups

Algk → Grp

A 7→
{
x ∈ A xn = 1

}
and is represented by k[X]/(Xn − 1). This k-group is called the k-group of the n-th roots of
unity and is denoted by µn,k or simply by µn when this causes no confusion. y
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Example 2.1.27. If p > 0, then for every r ∈ N>0 the kernel of the morphism Ga → Ga
determined by

k[X] → k[X]

X 7→ Xpr

corresponds to the copresheaf of groups

Algk → Grp

A 7→
{
x ∈ A xp

r
= 0

}
and is represented by k[X]/Xpr . This k-group is denoted by αpr,k or simply by αpr when this
causes no confusion. y

Example 2.1.28. Any elliptic curve over k is an example of a commutative k-group. y

2.2 Categories of group schemes

In this section we assume that k is a field. We now start concentrating on commutative k-groups,
and we will observe the remarkable fact that many subcategories of the category of commutative
k-groups are Abelian.

Theorem 2.2.1. [SGA3I, Th. VIA.5.4.2] The category of commutative algebraic k-groups is
Abelian.

We denote this category by AGSk. By Theorem 1.4.4 we obtain the following corollary.

Corollary 2.2.2. The category of commutative pro-algebraic k-groups is Abelian.

We denote this category by PAGSk.
It may be shown that the full subcategory or AGSk of commutative affine algebraic k-groups
is closed under kernels, cokernels and extension so that we obtain the following theorem.

Theorem 2.2.3. [SGA3I, Cor. 5.4.3] The category of affine commutative algebraic k-groups is
Abelian.

We denote this category by AAGSk.

Remark 2.2.4. The fact that AAGSk is Abelian can be proved purely in the setting of Hopf-
algebras (see [Tak72, Th. 3.1]). y

Theorem 2.2.5. The pro-completion of the category of affine algebraic k-groups is equivalent
to the category of affine k-groups.

Proof. This follows immediately from Example 1.3.7 and the anti-equivalence between the cat-
egory of affine k-groups and the category of Hopf k-algebras.

Remark 2.2.6. As every Hopf k-algebra is the filtered colimit of all its finitely presented Hopf
k-subalgebras, we see by Proposition 2.1.17 that every affine k-group is the filtered limit of all
its algebraic quotients. (For commutative affine k-groups this can also be shown more abstractly
using Theorem 1.4.13.) y
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Theorem 2.2.7. The pro-completion of the category of commutative affine algebraic k-groups
is equivalent to the category of commutative affine k-groups.

Proof. This follows immediately from a slight modification of Example 1.3.7 by replacing the
expression “cogroup object” with the expression “cocommutative cogroup object” and the anti-
equivalence between the category of commutative affine k-groups and the category of cocom-
mutative Hopf k-algebras.

Corollary 2.2.8. The category of commutative affine k-groups is Abelian.

Proof. This follows immediately from the preceding theorem and Theorem 1.4.4.

Remark 2.2.9. This is proved directly in [DG70, Cor. III.3.7.4]. Considering also Remark 2.2.4
we see that there are thus three distinct ways of proving this fact. y

We denote this category by PAAGSk.

2.3 Structure theory of commutative group schemes

In this section we assume that k is a field. Algebraic k-groups and commutative affine k-groups
possess a well-understood, elegant structure theory (for the former see [Mil12, p. 15], the latter
will be explained in this chapter). As in §2.1 we will present the theory in a wider context than
we need.
We begin with a quick overview before moving on to the details which are presented in the
following subsections: Most importantly, any locally algebraic k-group is the extension of an
étale k-group (see §2.3.1) by a connected algebraic k-group. This constitutes the algebraic
analogue of the fact that any Lie group is the extension of a discrete group by the connected
component of its unit. If k is perfect, then any smooth connected k-group is the extension of an
Abelian k-variety (see §2.3.2) by an affine algebraic k-group. Finally, any commutative affine
k-group is the extension of a unipotent k-group (see §2.3.5) by a k-group of multiplicative type
(see §2.3.4).

2.3.1 Étale group schemes

In this section we consider a generalisation of constant group schemes (see Example 2.1.21).

Definition 2.3.1. A k-group is called étale if its underlying k-scheme is étale, that is, if its
structure morphism is étale. y

Proposition 2.3.2. [DG70, Prop. I.4.6.1] A k-scheme is étale iff it is the disjoint union of
affine k-schemes of the form Spec k′, where k ↪→ k′ is a finite, separable field extension.

Corollary 2.3.3. Every constant k-scheme is étale. The converse is true if k is separably
closed.

Corollary 2.3.4. An étale k-scheme is algebraic iff it is finite iff it is affine.
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Proof. If an étale k-scheme is affine, then it is isomorphic to the spectrum of an étale k-algebra,
so it is finite and a fortiori algebraic. On the other hand, if an étale k-scheme is algebraic, then
it is in particular quasi-compact, so that it is isomorphic to the finite coproduct of k-schemes
of the form Spec k′, where k ↪→ k′ is a finite separable field extension, so it must be the affine
k-scheme of the product of separable field extensions of k.

The most important example of étale k-groups for us will be the following.

Example 2.3.5. [DG70, Ex. I.5.1.5] For every n > 0 the k-group of the n-th roots of unity µn
(see Example 2.1.26) is étale iff n · 1k 6= 0. y

We now give the precise result stating how étale k-groups fit into the structure theory of
locally algebraic k-groups.

Theorem 2.3.6. [DG70, Th. II.5.1.1, Prop. II.5.1.8] Let G be a locally algebraic k-group, then the
connected components of G are irreducible, algebraic and of the same dimension. The connected
component G◦ of the unit e ∈ G(k) is a k-subgroup. The k-group G fits into a short exact
sequence

0→ G◦ → G→ π0(G)→ 0,

where π0(G) is an étale k-group. The fibres of G → π0(G) are the connected components of
G.

Definition 2.3.7. Let G be as in Theorem 2.3.6, then G◦ is called the identity component of G
and π0(G) is called the k-group of connected components of G. y

Corollary 2.3.8. A locally algebraic k-group G is algebraic iff π0(G) is finite.

Corollary 2.3.9. The map sending any locally algebraic k-group to its k-group of connected
components extends to a functor.

Proof. This follows from the fact that for any locally algebraic k-groups G and H with G

connected any morphism ϕ : G→ H must factor through H◦ ↪→ H.

Corollary 2.3.10. The functor π0 preserves epimorphisms.

Proposition 2.3.11. [DG70, Cor. I.4.6.8.iii] A locally algebraic k-group G is connected iff
π0(G) ∼= Spec k.

Proposition 2.3.12. [DG70, Cor. I.4.6.10] The functor π0 preserves finite products.

Corollary 2.3.13. The product of two locally algebraic k-groups is connected iff its factors are
connected.

Proof. Let G1, G2 be locally algebraic k-groups. The k-group π0(G1×kG2) ∼= π0(G1)×k π0(G2)

is the disjoint union of the k-groups Spec k1×k Spec k2, Spec k1 and Spec k2 are k-subschemes of
π0(G1) and π0(G2) respectively; thus the number of connected components of π0(G1 ×k G2) is
greater or equal to the number of connected components of G1 times the number of connected
components of G2. It is thus enough to check that if both G1 and G2 are connected, then we
have π0(G1 ×k G2) ∼= Spec k ×k Spec k ∼= Spec k.
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The following corollary of Theorem 2.3.6 is needed for the subsequent lemma.

Corollary 2.3.14. A locally algebraic k-group is connected iff it is irreducible.

We will need the following lemma in Proposition 2.3.36.

Lemma 2.3.15. An affine k-group is connected iff it is irreducible.

Proof. That any irreducible affine k-group is connected is clear. To prove the converse, let G
be a connected affine k-group, then all its affine algebraic quotients are connected an therefore
irreducible. Assume there existed two non-zero elements x, y in the corresponding Hopf k-algebra
O(G) such that xy = 0, then these would be contained in a finitely generated Hopf subalgebra
of O(G), which leeds to a contradiction (see Example 1.3.7).

We finish this subsection with a description of the category of commutative, finite étale
k-groups.

Proposition 2.3.16. The category of commutative, finite étale k-groups forms an Abelian sub-
category of PAAGSk.

Proof. It is easily checked that the product of two étale algebras is again étale, so that the
category of commutative, finite étale k-groups is closed under coproducts, and is thus additive.
By [Bou70, Prop. V.6.4.3] subalgebras and quotients of étale algebras are again étale algebras, so
that the category of commutative, finite étale k-groups is also closed under kernels and cokernels
(see Propositions 2.1.9 and 2.1.17).

2.3.2 Abelian varieties

Definition 2.3.17. A k-group is called an Abelian k-variety or Abelian variety over k if it is
smooth, connected and proper. y

Example 2.3.18. Elliptic curves over k are exactly the Abelian k-varieties of dimension 1 (see
[Hid13, Lm 6.1]). y

Just as for elliptic curves, general Abelian varieties are commutative, and the group structure
is uniquely determined by the choice of a zero element.

Proposition 2.3.19. [Con02, Lm. 2.2] Let A be an Abelian k-variety, G a connected smooth
k-group, and let ϕ : G → A be a morphism of k-schemes mapping the unit element of G to the
unit element of A, then ϕ is a morphism of k-group schemes.

Corollary 2.3.20. Let A be an Abelian variety over k, then

(I) any group structure on the underlying k-scheme of A with the same zero element coincides
with the given group structure;

(II) the k-group A is commutative.
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Proof. (I) Denote by A′ an Abelian variety with the same underlying k-scheme and zero element
as A, then the identity morphism of k-schemes of the underlying scheme of A and A′ induces an
isomorphism between A and A′.
(II) The inverse image morphism ι : A → A is a k-group morphism; this property uniquely
characterises commutative group objects in any category.

Remark 2.3.21. Just like for elliptic curves there is an intrinsic way to define the group law of
any Abelian variety (see [MO25262]). y

The following theorem is important to characterise sheaves associated to Abelian varieties
(see §2.4).

Theorem 2.3.22. [BLR90, Cor. 8.4.6] Let A be an Abelian k-variety and X a regular k-scheme,
then any rational k-morphism X 99K A is defined everywhere.

Theorem 2.3.23. [CS86, Th. V.7.1] Every Abelian variety is projective.

Theorem 2.3.24 (Chevalley). [Con02, Lm. 2.2] Assume that k is perfect, then for any smooth,
connected, algebraic k-group G there exists a unique short exact sequence of smooth, connected,
algebraic k-groups

0→ H → G→ A→ 0

such that H is affine and A is an Abelian k-variety.

We thus see that if k is perfect, then every smooth, connected, algebraic k-group is the
extension of a projective k-group by an affine k-group.
Finally, turning to the category of Abelian k-varieties, we see that it forms an additive subcat-
egory of AGSk, i.e. it is closed under products, but is not an Abelian subcategory as the kernel
of a morphism of Abelian k-varieties (in AGSk) may be discrete, and thus not connected (see
[CS86, Th. V.8.2]). Of course this does not a priori exclude the possibility that the category of
Abelian k-varieties forms an Abelian category, but we are unaware whether this is the case.

2.3.3 Finite group schemes

We now make a brief diversion from the structure theory outlined in the introduction of this
section. We have seen in Theorem 2.3.24 that every algebraic k-group may be decomposed into
an affine and a projective part. In this subsection we briefly study those algebraic k-groups
which are both affine and projective; these will play an important role in the proof of Theorem
5.1.1.

Proposition 2.3.25. A k-group is finite iff it is both affine and projective.

Proof. This is simply a corollary of the fact that a morphism of schemes is finite iff it is affine
and projective (see [GW10, Cor. 13.77]).

We have see in Corollary 2.3.3 that if k is separably closed, then the notions of constant and
étale k-groups coincide. We now expand this result to the case of algebraic k-groups.
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Proposition 2.3.26. If k is separably closed, then an algebraic k-group is finite iff it is étale
iff it is constant.

Proof. We have already proved the second equivalence in Corollary 2.3.3. For the first equival-
ence see [Pin05, Prop. 12.1].

Theorem 2.3.27. [Pin05, Th. 10.5] The category of commutative finite k-groups is Abelian.

Remark 2.3.28. This may be proved purely in the setting of Hopf k-algebras (see [Swe69,
Ch. XVI]). y

2.3.4 Groups of multiplicative type

Groups of multiplicative type are defined in terms of diagonalisable groups, so we study these
first.

Diagonalisable k-groups

Consider the functor
D : Ab → Cat(Algk,Set)

Γ 7→ (A 7→ Ab(Γ, A×)).

For every Abelian group Γ the functor D(Γ) is representable by k[Γ], the group algebra of Γ

over k, so that it is a commutative, affine k-group.

Definition 2.3.29. A k-group is called diagonalisable if it lies in the essential image of D. y

Let Γ be an Abelian group, then there is a canonical isomorphism k[Γ] ⊗ k[Γ] ∼= k[Γ × Γ]

owing to the fact that the underlying k-module of k[Γ] is simply a k-vector space with basis Γ,
so that the underlying k-module of k[Γ] ⊗ k[Γ] must be canonically isomorphic to the k-vector
space with basis Γ × Γ; it is then straightforward to check that the induced homomorphism of
k-modules is compatible with multiplication. It is now not hard to see that the Hopf k-algebra
structure on k[Γ] is given by

k[Γ] → k[Γ× Γ] (multiplication)
g 7→ (g, g)

k[Γ] → k (unit)
g 7→ 1

k[Γ] → k[Γ] (inverse)
g 7→ −g.

Theorem 2.3.30. [DG70, Prop. II.1.2.11 & Cor. IV.1.1.3] The functor D : Ab→ PAAGSk is
fully faithful and exact.

Corollary 2.3.31. The category of diagonalisable k-groups is Abelian.
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Proposition 2.3.32. Let Γ be an Abelian group, then Γ is finitely generated iff D(Γ) is algebraic.

Proof. Let Γ be an Abelian group and assume that it is generated by the elements g1, . . . , gn, then
it is clear that these same elements generate D(Γ). Conversely, assume that D(Γ) is algebraic,
then there are elements

∑n0
i=1 x0 i g0 i, . . . ,

∑nN
i=1 xN i gN i, where all xi j ∈ k and gi j ∈ Γ, which

generate k[Γ]. We claim that the set E := {g0 1, g0 2, . . . , gN nN−1, gN nN
} generates Γ. Any

element g ∈ Γ may be written as
∑m

i=1 xig
′
i with all xi ∈ k and g′i being a product of elements

in E, then, as Γ forms a basis of the underlying vector space of k[Γ], we have xi = 1 for some
i ∈ {1, . . . ,m} and xjg′j = 0 for those j ∈ {1, . . . ,m} such that i 6= j.

Corollary 2.3.33. The category of finitely generated diagonalisable k-groups is Abelian.

Proposition 2.3.34. [DG70, Cor. IV.1.1.7] The category of diagonalisable k-groups is closed
under all limits and all finite colimits in PAGSk.

Corollary 2.3.35. The category of diagonalisable k-groups is equivalent to the pro-completion
of the category of algebraic diagonalisable k-groups.

Proof. Algebraic diagonalisable k-groups are compact in the category of diagonalisable k-groups
so that by Remark 2.2.6 we see that every diagonalisable k-group is the filtered colimit of
algebraic diagonalisable k-groups. The statement then follows by Corollary 1.1.17.

Let Γ be a finitely generated Abelian group, then

Γ ∼= Z⊕ · · · ⊕ Z⊕ Z/pr11 Z⊕ · · · ⊕ Z/p
rn
n Z,

where p1, . . . , pn are prime numbers, and r1, . . . , rn are non-negative integers. We thus see that

D(Γ) ∼= Gm ⊕ · · · ⊕Gm ⊕ µpr11 ⊕ · · · ⊕ µprnn .

W.l.o.g. we assume that for some m ∈ N we have p1 = · · · = pm = p and that pm+1, . . . , pn are
unequal to p (thus m is necessarily 0 if p = 0), then the short exact sequence

0→ Gm ⊕ · · · ⊕Gm ⊕ µpr11 ⊕ · · · ⊕ µprmm → D(Γ)→ µ
p
rm+1
m+1

⊕ · · · ⊕ µprnn → 0

is the one from Theorem 2.3.6, where Gm ⊕ · · · ⊕ Gm ⊕ µpr11 ⊕ · · · ⊕ µprmm is isomorphic to the
identity component of D(Γ) and µ

p
rm+1
m+1

⊕ · · · ⊕ µprnn is isomorphic to the k-group of connected
components of D(Γ).

Proposition 2.3.36. Let Γ be an Abelian group.

(1) If p = 0, then D(Γ) is reduced. If p > 0, then D(Γ) is reduced iff the p-primary subgroup
of Γ is zero.

(2) If p = 0, then D(Γ) is connected iff Γ has no torsion. If p > 0, then D(Γ) is connected iff
the torsion subgroup of Γ is equal to its p-primary subgroup.
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Proof. (1) To see whether an element
∑n

i=1 xigi ∈ k[Γ] with xi ∈ k and gi ∈ Γ for all
i ∈ {1, . . . , n} is nilpotent, it is enough to consider the subgroup of Γ generated by the ele-
ments g1, . . . , gn, so we may assume that Γ is finitely generated. If p = 0, then D(Γ) is reduced
as by the preceding discussion D(Γ) is the product of finitely many finite étale k-groups and
copies of Gm, which are all geometrically reduced; alternatively one may simply invoke Proposi-
tion 2.1.6 and Theorem 2.1.7. We now assume that p > 0. If for none of the factors µqr ⊆ D(Γ)

we have that q = p, then as for the case p = 0 the k-group D(Γ) is the product of geometrically
reduced k-groups. Conversely, assume q = p and denote by g ∈ Γ the generator of the corres-
ponding cyclic group, then g − 1 ∈ k[Γ] is nilpotent.
(2) By Lemma 2.3.15 D(Γ) is connected iff it is irreducible; to check irreducibility we may
assume, like in the previous point, that k[Γ] and thus Γ is finitely generated (see Proposition
2.3.32). We denote by T (Γ) the torsion subgroup of Γ. If p = 0, then D(Γ) is connected iff
its k-group of connected components D(T (Γ)) is isomorphic to zero (see the preceding discus-
sion). Assume then that p > 0, then again by the preceding discussion the k-group of connected
components of D(Γ) is isomorphic to the direct sum of those subgroups µqr ⊆ D(Γ) such that
q 6= p.

Proposition 2.3.37. Let G be a diagonalisable k-group, then PAAGSk(G,Ga) ∼= 0.

Proof. Let Γ be an Abelian group such that G ∼= k[Γ], then an element
∑

g∈Γ xg g ∈ k[Γ] is in
PAAGSk(G,Ga) iff

∑
g∈Γ xg g⊗g =

∑
g∈Γ xg(g⊗1+1⊗g) which is only true for

∑
g∈Γ xg g = 0

(see Example 2.1.19).

Groups of multiplicative type

Theorem 2.3.38. Let G be a k-group, then the following are equivalent:

(I) There exists a field extension K of k such that G⊗k K is diagonalisable.

(II) The group G⊗k k is diagonalisable.

(III) The group G⊗k ksep is diagonalisable.

(IV) The group G is affine and commutative, and the only morphism from G to Ga is the zero
morphism.

Proof. The implications (III) =⇒ (II) =⇒ (I) are clear. We now show (I) =⇒ (IV).
Let K be a field extension of k such that G ⊗k K is diagonalisable. By [DG70, Cor. I.2.3.9]
and Proposition 2.1.17 G ⊗k K is affine and commutative. In Example 2.1.19 we saw that
PAAGSk(G,Ga,k) may be viewed as a k-submodule of O(G). Both PAAGSK(G⊗k K,Ga,K)

and PAAGSk(G,Ga,k)⊗k K may be viewed as submodules of O(G)⊗k K and it is then easily
checked that PAAGSk(G,Ga,k)⊗kK ⊆ PAAGSK(G,Ga,K). As PAAGSK(G,Ga,K) ∼= 0 (see
Proposition 2.3.37) we see that PAAGSk(G,Ga,k)⊗kK ∼= 0, so that also PAAGSk(G,Ga,k) ∼=
0.
For the implications (IV) =⇒ (II) and (II) =⇒ (III) we refer to [DG70, Th. IV.1.2.2] and
[DG70, Cor. IV.1.3.5.] respectively.
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Definition 2.3.39. A k-group is said to be of multiplicative type if it satisfies the equivalent
conditions in Theorem 2.3.38. y

Unfortunately we do not know of any decomposition theorems of multiplicative groups into
simpler groups such as Gm; this will be the main reason why we will be working over a separably
closed field in Part II.
We finish this subsection with some results on the category of k-groups of multiplicative type.

Proposition 2.3.40.

(1) Every k-subgroup and every quotient of a k-group of multiplicative type is of multiplicative
type.

(2) All limits and all finite colimits of k-groups of multiplicative type are of multiplicative type.

Proof. By Theorem 2.3.38 we must simply show that base change by k (or ksep) sends the
structures in the statements of the proposition to the corresponding structures of diagonalisable
k-groups. As limits commute with limits, base change commutes with limits and thus also mono-
morphisms, so we have proved the first respective parts of the two statements (see Proposition
2.1.9). The property “faithfully flat” is stable under base change, which proves the second part
of (1) (see Proposition 2.1.17). For the final part of (2) we may simply note that as PAAGSk

is Abelian, finite coproducts coincide with products.

Corollary 2.3.41. The category of k-groups of multiplicative type is equivalent to the pro-
completion of the category of algebraic k-groups of multiplicative type.

Proof. The proof is completely analogous to the proof of Corollary 2.3.35.

Corollary 2.3.42. The categories of k-groups of multiplicative type and of algebraic k-groups
of multiplicative type both form Abelian subcategories of PAAGSk.

2.3.5 Unipotent group schemes

Definition 2.3.43. A k-group G is called unipotent if it is affine and if for every non-zero closed
k-subgroup H ⊆ G there exists a non-zero morphism H → Ga. y

While k-groups of multiplicative type are affine k-groups with no morphism to Ga, unipotent
k-groups are required to have such morphisms.

Proposition 2.3.44. [DG70, Prop. IV.2.2.5] Let G be an affine, algebraic k-group, then the
following are equivalent:

(I) G is unipotent.

(II) There exists an n ∈ N and a monomorphism G ↪→ Un (see Example 2.1.25).

(III) G possesses a composition series whose quotients are isomorphic to Ga if char k = 0, and
whose quotients are isomorphic to Ga, αp, or a finite étale k-subgroup of Ga if char k > 0.
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Proposition 2.3.45. [DG70, Prop. IV.2.2.3]

(1) Every k-subgroup and every quotient of a unipotent k-group is unipotent.

(2) All limits of unipotent k-groups are unipotent.

Corollary 2.3.46. The category of unipotent k-groups is equivalent to the pro-completion of the
category of algebraic, unipotent k-groups.

Proof. The proof is completely analogous the proof of Corollary 2.3.35.

Corollary 2.3.47. The categories of commutative unipotent k-groups and of algebraic commut-
ative unipotent k-groups both form Abelian subcategories of PAAGSk.

If char k = 0, then the categories of commutative unipotent k-groups and of algebraic com-
mutative unipotent k-groups have a particularly simple structure.

Proposition 2.3.48. [DG70, Prop. IV.2.4.2] Assume char k = 0.

(1) The functor
Vectk → Grp(Schk)

V 7→ SpecS(V )

(where S(V ) denotes the symmetric algebra of V ) restricts to an equivalence between the
category of finite dimensional vector spaces over k and the category of algebraic commut-
ative unipotent k-groups.

(2) The functor
Grp(Schk) → Vectk

G 7→ Grp(Schk)(G,Ga)

(see Example 2.1.19) restricts to an anti-equivalence between the category of commutative
unipotent k-groups and the category of vector spaces over k; it restricts further to an
anti-equivalence between the category of commutative algebraic unipotent k-groups and the
category of finite dimensional vector spaces over k.

In characteristic > 0 the theory is considerably richer; if k is also perfect, then the category
of commutative unipotent k-groups is anti-equivalent to the category of so-called effaceable
Dieudonné modules (see [DG70, Th. V.1.4.3]); this is a sub-category of the category of modules
over the so-called Dieudonné ring over k (see [DG70, §V.1.3]). This is the main reason why we
will work over a field of characteristic 0 in Chapters 4 & 5.
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2.3.6 Decomposition of commutative affine group schemes

Theorem 2.3.49. [DG70, IV.3. Th. 1.1] Let G be a commutative affine k-group, then G pos-
sesses a largest affine subgroup of multiplicative type Gm; this subgroup is normal, and the
quotient Gu := G/Gm is unipotent. If k is perfect, then the resulting short exact sequence

0→ Gm → G→ Gu → 0

splits.

Notation 2.3.50. Let G be a commutative affine k-group, then its biggest multiplicative sub-
group is denoted by Gm, and the unipotent quotient of G by Gm is denoted by Gu. y

Proposition 2.3.51. [DG70, Prop. IV.3.1.3] Let G,H be commutative affine k-groups and let
ϕ : G→ H be a morphism, then ϕ(Gm) ⊆ Hm, and if k is perfect, then ϕ(Gu) ⊆ Hu.

Proposition 2.3.52. If k is algebraically closed and of characteristic zero, then any connected
commutative algebraic affine k-group is of the form Gm × · · · ×Gm ×Ga × · · · ×Ga.

Proof. This follows from putting together Theorem 2.3.24, Propositions 2.3.36 & 2.3.48.1 and
Theorem 2.3.49.

Summarising, if k is algebraically closed and of characteristic zero, then by Theorems 2.3.6,
2.3.24 and Propositions 2.3.52 for any commutative algebraic k-group G we obtain the following
composition series

G

G0 π0(G)

Ga × · · · ×Ga ×Gm × · · · ×Gm V,

(2.1)

where V is an Abelian k-variety.

2.4 Sheaves associated to commutative group schemes

In this section, let S be a scheme and let X,T be two schemes over S, then the presheaf
SchS( , T ) : SchS,Zar → Set is a sheaf because Zar is subcanonical. The big site associated
to X → S is isomorphic to SchX,Zar (see [Stacks, Tag 03EH]), so that the sheaf SchS( , T )

restricts to a sheaf on SchX,Zar and then restricts further to a sheaf on OuvX .

Definition 2.4.1. The sheaf SchS( , T ) : Ouvop
X → Set is called the sheaf (of sets) on X

associated to T , and is denoted by TX . y
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For any two S-schemes T ′, T ′′ and any morphism ϕ : T ′ → T ′′ we obtain a morphism of
sheaves on SchS,Zar given by{

SchS(U, T ′) → SchS(U, T ′′)

f 7→ ϕ ◦ f

}
U∈SchS

,

which restricts to a morphism of sheaves on X so we obtain a morphism T ′X → T ′′X .
In the next subsection it will be important to consider fppf-sheaves. We obtain the commutative
diagram of functors

SchS S̃chS,fppf S̃chS,Zar

S̃chX,fppf S̃chX,Zar ShX .

As all these functors are right exact, we obtain the commutative diagram

Ab(SchS) Ab(S̃chS,fppf) Ab(S̃chS,Zar)

Ab(S̃chX,fppf) Ab(S̃chX,Zar) Ab(ShX).

(2.2)

Some properties of sheaves associated to special group schemes

Proposition 2.4.2. Let k be a field, then sheaves on irreducible k-schemes associated to com-
mutative constant k-groups are flasque.

Proof. Let X be an irreducible k-scheme and let G be a commutative constant k-group corres-
ponding to the Abelian group Γ, then GX is given by U 7→ Top(U,Γ) (see Example 2.1.21). As
every open subset of X is connected, GX is isomorphic to U 7→ Γ for U 6= ∅ and ∅ 7→ 0, which
is clearly a flasque sheaf.

Proposition 2.4.3. Let k be a field, then sheaves on regular k-schemes associated to Abelian
k-varieties are flasque.

Proof. This is an immediate corollary of 2.3.22.

2.4.1 Exactness of Ab(Schk)→ Ab(S̃chk,Zar)

We now assume that S is the spectrum of a field k, and we will only consider Abelian (pre-)
sheaves, so that C̃J denotes the Abelian category of Abelian sheaves on any site (C, J). All func-
tors in (2.2) are left exact and the vertical functors are even exact (see [Stacks, Tag 00XZ]). From
the description of how to construct quotient k-groups in §2.1.2 it is clear that the restriction of
the functor Ab(Schk)→ S̃chk,fppf to AGSk or PAAGSk is exact and thus also its composition
with S̃chk,fppf → S̃chX,fppf . Unfortunately the restriction of the functor Ab(Schk) → ShX to
AGSk or PAAGSk is no longer exact. Keeping in mind that a complex 0→ F ′ → F → F ′′ → 0
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of Abelian Zariski sheaves is exact iff 0→ F ′(A)→ F (A)→ F ′′(A)→ 0 is exact for every local
k-algebra A, we consider the following example.

Example 2.4.4. Recall from Example 2.1.26 that we have a short exact sequence
0 → µn,k → Gm,k → Gm,k → 0. This sequence does not induce an exact sequence of Za-
riski sheaves, for if it did, then from any local k-algebra A we would obtain a short exact
sequence 1 → µn(A) → Gm(A) → Gm(A) → 1, which is not true in general; take for example
A = k[X](X). y

Fortunately the short exact sequences of commutative k-groups, which are most important
to us, do induce short exact sequences of Zariski sheaves.

Proposition 2.4.5. Assume that k is algebraically closed and let G be a locally algebraic k-group,
then the short exact sequence

0→ G◦ → G→ π0(G)→ 0

(see Theorem 2.3.6) induces an exact sequence of Zariski sheaves.

Proof. Because k is algebraically closed π0(G) is a constant k-group (see Corollary 2.3.3) and
every closed point of G is rational. Every connected component of G contains a closed point
(see [GW10, Rem. 3.35]). Let x ∈ π0(G) and let Gx be the corresponding connected component.
We obtain the pull-back diagram

G π0(G)

Gx Spec k

x

together with a section of Gx → Spec k, so we see that any morphism to x factors through
G→ π0(G).

Proposition 2.4.6. Assume that k is algebraically closed of characteristic 0, then for any con-
nected algebraic k-group G the unique short exact sequence

0→ H → G→ A→ 0 (2.3)

such that H is a connected affine algebraic k-group and A is an Abelian k-variety (see Theorem
2.3.24) induces an exact sequence of Zariski sheaves.

Proof. Let X be a k-scheme, then by the previous discussion we know that (2.3) induces a short
exact sequence in S̃chX,fppf , so we obtain a long exact sequence

H1
fppf(X,H) · · ·

0 Schk(X,H) Schk(X,G) Schk(X,A) .
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We will show that H1
fppf(X,H) ∼= H1

Zar(X,H), and then we see that (2.3) is exact as the
first Zariski cohomology group of any sheaf of Abelian groups vanishes on local k-schemes (see
Corollary 3.1.13). By Proposition 2.3.52 the k-scheme H is isomorphic to a finite product
Ga × · · · × Ga × Gm × · · · × Gm, so it is enough to show H1

fppf(X,Ga) ∼= H1
Zar(X,Ga) and

H1
fppf(X,Gm) ∼= H1

Zar(X,Gm). To see the first isomorphism we recall that for any quasi-coherent
OX -module F and any i ∈ N we have H1

fppf(X,F ) ∼= H1
Zar(X,F ), where the first cohomology

group is obtained from the fppf-sheaf (i : U → X) 7→ Γ(U, i∗(F )) (see [Mil80, Prop. III.3.7]);
it is then easily verified that for any morphism i : U → X we have Γ(U, i∗OX) ∼= Γ(U,OU ) ∼=
Schk(U,Ga). The second isomorphism is Hilbert’s Thoerem 90 (see [Mil80, Prop. III.4.9]).

Proposition 2.4.7. Any split exact sequence of commutative k-groups induces an exact sequence
of Zariski sheaves.

Proof. This follows from the fact that all functors in (2.2) are additive.
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Chapter 3

Local Cohomology

3.1 Fundamental notions

In this section we recall some basic facts about sheaves and sheaf cohomology, and establish
some conventions.

3.1.1 Inverse image functors, separable presheaves and flasque presheaves

Throughout this subsection X and Y denote topological spaces and ϕ : X → Y denotes a
continuous map. We then obtain a functor OuvY → OuvX given by U 7→ ϕ−1(U), which
induces the direct image functor ϕ∗ : PShX → PShY . As Set admits all small colimits we see
that the functor ϕ∗ possesses a left adjoint (see [KS06, §2.3]), which we denote by ϕ†, and call
the inverse image functor (of presheaves) of ϕ. As ϕ†F is just the left Kan extension of F we
see that it is given by U 7→ lim−→ϕ(U)⊆V F (U).

Proposition 3.1.1. The functor

ϕ∗ : PShX → PShY

as well as its left adjoint
PShX ← PShY : ϕ†

take separated presheaves to separated presheaves, so that ϕ† a ϕ∗ restricts to a new adjunction

ϕ∗ : PShsX PShsY : ϕ†.⊥

Proof. It is well known that ϕ∗ takes separated presheaves to separated presheaves. To see that
this is the case for ϕ†, let U ⊆ X be an open subset and let {Ui}i∈I be an open cover of U ;
we must show that for any two sections s, t ∈ ϕ†(U) such that for all i ∈ I : s|Ui = t|Ui we
have s = t. Assume that s and t are represented by the pairs (s̃, V ) and (t̃,W ) respectively;
by restricting to V ∩W we may assume that V = W ; assume also that for every i ∈ I the
section s|Ui = t|Ui is represented by (si, Vi), with Vi ⊆ V . By assumption there exists for every
i ∈ I an open subset ϕ(Ui) ⊆ Wi ⊆ Vi such that s̃|Wi = si|Wi . The pairs (s̃|⋃Wi

,
⋃
i∈IWi) and
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(t̃|⋃Wi
,
⋃
i∈IWi) still represent s and t respectively, but because (s̃|⋃Wi

)|Wi = (t̃|⋃Wi
)|Wi for all

i ∈ I we see that s̃|⋃Wi
= t̃|⋃Wi

, so that s = t.

Proposition 3.1.2. The functor

ϕ∗ : PShX → PShY

as well as its left adjoint
PShX ← PShY : ϕ†

take flasque presheaves to flasque presheaves, so that ϕ† a ϕ∗ restricts to a new adjunction

ϕ∗ : PShfX PShfY : ϕ†.⊥

Proof. That ϕ∗ takes flasque presheaves to flasque presheaves is obvious. To see that this is the
case for ϕ†, let U ⊆ X be an open subset, then any section s ∈ ϕ†F (U) is represented by a pair
(s̃, Y ); but (s̃, Y ) also represents a section in ϕ†F (U ′) for any other open subset U ′ ⊆ X, in
particular any such open subset containing U .

3.1.2 Dimension and codimension

Dimension and codimension of topological spaces

Definition 3.1.3. Let X be a topological space, then the supremum of the lengths of the chains
of irreducible closed subsets of X is called the dimension of X and is denoted by dimX. y

Remark 3.1.4. We immediately see that dim∅ = −∞. y

Definition 3.1.5. Let X be a topological space and let Y ⊆ X be an irreducible closed subset
The supremum of the lengths of chains of irreducible closed subsets of X of which Y is the
smallest element is called the codimension of Y and is denoted by codimY . If Y is any closed
subset, then the infimum of the codimensions of the irreducible components of Y is called the
codimension of Y and is denoted by codimY . y

Remark 3.1.6. We immediately see that codim∅ =∞ (viewing ∅ as a subspace of X). y

Notation 3.1.7. Let X be a topological space, then for all ` ≥ 0 the set of points such that
their closure has codimension ` is denoted X`. y

Dimension and codimension of schemes

Definition 3.1.8. Let A be a ring, then the dimension of A, denoted by dimA, is the dimension
of the underlying topological space of SpecA. y

Proposition 3.1.9. Let X be a scheme and let Z be a closed irreducible subset with generic
point z, then codimZ = dim OX,z.
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Proof. First we assume that X is the affine spectrum of a ring A, in which case the statement
of the proposition is easy; if z = p ∈ SpecA, then Z = V (p) and we have

codimZ = sup
{

length(p0 ( p2 ( · · · ( pn) pi ∈ SpecA, pn = p
}

= dimAp.

In general we have

codimZ = sup
{

length(x0, . . . , xn) xi ∈ X, x0 = z, xi ∈ {xi+1}, xi 6= xi+1

}
.

Let x0, . . . , xn ∈ X such that x0 = z, xi ∈ {xi+1}, xi 6= xi+1, then every open neighbourhood
and in particular every affine open neighbourhood of x0 = z contains all the elements xi, so that
the general case reduces to the affine case.

Definition 3.1.10. Let A be a ring and a an ideal of A, then the height of a, denoted ht(a) is
the number codim(V (a),SpecA). y

3.1.3 Sheaf cohomology

Sheaf cohomology of Abelian sheaves vs. sheaf cohomology of OX-modules

Let (X,OX) be a ringed space. In standard references of local cohomology such as [SGA2]
the cohomology of the functors Γ : ModOX

→ Ab and Γ : ShX = ModZX
→ Ab are not

distinguished. This is justified as by [God58, §II.7.1] the category of modules over a sheaf of
rings contains enough injective sheaves and these are flasque; the latter notion does not depend
on any module structure which may be present on an Abelian sheaf.

Sheaf cohomology on Noetherian spaces

Theorem 3.1.11 (Grothendieck). [Gro57, Th. 3.6.5.] Let X be a Noetherian topological space
of dimension n, then H i(X,F ) ∼= 0 for all i > n and for all abelian sheaves F on X.

Sheaf cohomology on local schemes

Lemma 3.1.12. Let (A,m) be a local ring, and G a sheaf of groups on X, then Ȟ1(SpecA,G) ∼=
0.

Proof. The set Ȟ1(SpecA,G) is naturally bijective to the set of isomorphism classes of G-torsors
on SpecA. Let T be a G-torsor on SpecA, then there exists a covering {Ui}i∈I of SpecA such
that T (Ui) 6= ∅ for every i ∈ I, but the only open set containing m is SpecA, and a G-torsor is
trivial iff T (SpecA) 6= 0.

Corollary 3.1.13. Let (A,m) be a local ring, and F and a sheaf of Abelian groups on X, then
H1(SpecA,G) ∼= 0.

Proof. As G is Abelian the pointed set Ȟ1(SpecA,G) comes naturally endowed with the struc-
ture of an Abelian group which coincides with the first Zariksi cohomology group of G.
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3.2 Local cohomology

3.2.1 Fundamental notions

Definition 3.2.1. Let X be a topological space, let Z ⊆ X be a closed subset, and let F be an
Abelian sheaf on X, then ΓZ(X,F ) denotes the subgroup of Γ(X,F ) consisting of those sections
s with support in Z, i.e. such that for all x ∈ X \ Z we have sx = 0 or equivalently such that
s|X\Z = 0. y

Example 3.2.2. We consider two trivial cases. Let X be a topological space, let Z ⊆ X be a
closed subset, and let F be an Abelian sheaf on X. If Z = X then ΓZ(X,F ) = Γ(X,F ) and if
Z = ∅, then ΓZ(X,F ) = 0. y

Example 3.2.3. Let k be a field, let X be an irreducible k-scheme, and let Z be a closed subset
of X, then

ΓZ(X,GX) ∼=

{
Γ(X,GX) if Z = X,

0 if Z ( X

for every commutative k-group scheme G. In particular, if X is a local k-scheme with closed
point x, then

Γ{x}(X,GX) ∼=

{
Γ(X,GX) if dimX = 0,

0 if dimX > 0.

To see this, let s ∈ Γ(X,GX), then s ∈ ΓZ(X,GX) iff sX\Z = 0. The open subset s−1(G \ {e})
(see Proposition 2.1.2) then intersects with X \ Z iff Z 6= X and s 6= 0. y

Definition 3.2.4. Let X be a topological space and let Z ⊆ X be a closed subset, then for
every i ≥ 0 the i-th derived functor of

ΓZ(X, ) : ShX → Ab

is denoted by H i
Z(X, ), and for any Abelian sheaf F on X the group H i

Z(X,F ) is called the
i-th cohomology group of F with supports in Z. y

As in previous chapters we will give a more general account of the theory than is strictly ne-
cessary so that we may get a better feel of the subject. IfX is locally path connected, then for any
discrete topological Abelian group G the cohomology groups of the sheaf
X ⊇ U : U 7→ Top(U,G) are canonically isomorphic to the Eilenberg-Steenrod cohomology
groups of X with coefficients in G (see [Voi02, Th. 4.47]). This result is easily extended to the
relative case, i.e. for every i ≥ 0 we have a canonical isomorphism H i

Z(X,G) ∼= H i(X,X \Z;G).
We will now show that local cohomology groups of arbitrary Abelian sheaves on arbitrary topo-
logical spaces satisfy many of the properties of Eilenberg-Steenrod cohomology groups.

Remark 3.2.5. Cohomology with supports in a closed subset may be generalised in various
ways, e.g. to cohomology with supports in a locally closed subset or cohomology with supports
in a family of closed subsets. For a systematic treatment on the variations on the theme of
cohomology with supports see [Har66, Ch. IV]. y
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Proposition 3.2.6. Let X be a topological space and let Z ⊆ X be a closed subset, then for any
short exact sequence of Abelian sheaves 0 → F ′ → F → F ′′ → 0 on X we obtain a long exact
sequence

H1
Z(X,F ′) · · ·

0 H0
Z(X,F ′) H0

Z(X,F ) H0
Z(X,F ′′) .

Proof. This is a fundamental property of left derived functors.

Proposition 3.2.7 (Excision). Let X be a topological space, let Z ⊆ X be a closed subset, and
let F be an Abelian sheaf on X, then for any open subset U ⊆ X containing Z and for all i ≥ 0

the canonical homomorphism
H i
Z(X,F )→ H i

Z(U,F |U )

is an isomorphism.

Proof. We obtain a commutative diagram

Γ(X \ Z,F ) Γ(U \ Z,F )

Γ(X,F ) Γ(U,F )

ΓZ(X,F ) ΓZ(U,F )

in which we must show that the homomorphism ΓZ(X,F )→ ΓZ(U,F ) is an isomorphism. Let
s ∈ ΓZ(U,F ) and consider 0X\Z ∈ Γ(X \Z,F ), then s|U\Z = 0X\Z |U\Z = 0|U\Z , so there exists
a unique element t ∈ Γ(X,F ) such that t|U = s and t|X\Z = 0|U\Z by the sheaf conditions.

Proposition 3.2.8 (Exactness). Let X be a topological space, let Z ⊆ X be a closed subset, and
let F be an Abelian sheaf on X, then there is a long exact seqeunce

H1
Z(X,F ) · · ·

0 ΓZ(X,F ) Γ(X,F ) Γ(X \ Z,F ),

which is functorial in F , and where the homomorphisms

0→ ΓZ(X,F )→ Γ(X,F )→ Γ(X \ Z,F )

are the canonical ones.
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Proof. Let I be a flasque sheaf on X, then the sequence

0→ ΓZ(X, I)→ Γ(X, I)→ Γ(X \ Z, I)→ 0

is exact, so we see that for any injective resolution I∗ of F we obtain an exact sequence of cochain
complexes of Abelian groups (recall that injective sheaves are flasque; see [God58, §II.7.1])

...
...

...
...

...

0 ΓZ(X, I1) Γ(X, I1) Γ(X \ Z, I1) 0

0 ΓZ(X, I0) Γ(X, I0) Γ(X \ Z, I0) 0;

taking cohomology of this sequence yields the desired long exact sequence.

Finally we show that we may compute local cohomology groups using flasque sheaves (see
[KS06, Cor. 13.3.8]).

Proposition 3.2.9. [SGA2, Cor. 2.12] Let X be a topological space, let Z ⊆ X be a closed
subset, then for any flasque sheaf F on X we have

H i
Z(X,F ) ∼= 0 (i ≥ 0).

Comparing local cohomology on different spaces

Given a continuous map ϕ : X1 → X2 and a sheaf F on X2, there is a well known canonical
homomorphism H i(X2, F )→ H i(X1, ϕ

∗F ) for all i ∈ N (see e.g. [Ive86, §II.5] or [Sch11a, (6.8)]);
we will show how to extend this canonical homomorphism to local cohomology groups. Let
Z1 ⊆ X1, Z2 ⊆ X2 be closed subspaces such that ϕ−1(Z2) ⊆ Z1, and let I∗ be an injective
resolution of F and J∗ an injective resolution of ϕ∗F , then there is a morphism cochain complexes
ϕ∗I∗ → J∗ unique up to homotopy such that

J0 ϕ∗I0

ϕ∗F ϕ∗F=
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commutes, and thus for each i ∈ N we obtain the diagram

Γ(X1 \ Z1, J
i) Γ(X1 \ Z1, ϕ

∗Ii) Γ(X2 \ Z2, I
i)

Γ(X1, J
i) Γ(X1, ϕ

∗Ii) Γ(X2, I
i)

ΓZ1(X1, J
i) ΓZ1(X1, ϕ

∗Ii) ΓZ1(Ii, X2),

which commutes by the universal property of kernels; by taking cohomology of cochain complexes
we obtain for every i ∈ N a canonical homomorphism

H i
Z2

(X2, F )→ H i
Z1

(X1, ϕ
∗F ). (3.1)

Let X be a topological space, let Z1, . . . , Zn be pairwise disjoint closed subsets, and write
Z := Z1 ∪ · · · ∪Zn, then we have canonical morphisms H i

Zj
(X,F )→ H i

Z(X,F ) for all i ≥ 0 and
all j ∈ {1, . . . , n}, which induce a homomorphism

n⊕
j=1

H i
Zj

(X,F )→ H i
Z(X,F ). (3.2)

Proposition 3.2.10. The homomorphism (3.2) is an isomorphism.

Proof. As direct sums are exact in Ab we see that F 7→
⊕
H i
Zj

(X,F ) is the derived functor of
F 7→

⊕
ΓZj (X,F ) so it is enough to show that (3.2) is an isomorphism for i = 0. In this case

the map is given by (s1, . . . , sn) 7→ s1 + · · ·+sn. To see injectivity assume that s1 + . . .+sn = 0,
then for every j ∈ {1 + . . .+n} we have (s1, . . . , sn)|X\(Z\Zj) = sj |X\(Z\Zj) = 0 and sj |X\Zj

= 0

by assumption so that sj = 0 by the sheaf condition. To see surjectivity, let s ∈ ΓZ(X,F ), then
if for each j ∈ {1, . . . , n} we write sj for the section obtained by glueing together s|X\Z\Zj

and
0|X\Zj

, it is easily checked that (s1, . . . , sn) is sent to s.

We now examine how local cohomology behaves under localisation. Recall that for a scheme
X and a point x ∈ X the underlying topological space of Spec OX,x is canonically homeomorphic
to the subspace of X consisting of all points x′ ∈ X such that x ∈ {x′}, which may equivalently
be described as the intersection of all open sets containing x. Denote by j : Spec OX,x ↪→ X the
canonical inclusion; we want to understand how the local cohomology groups of any sheaf F on
X relate to the local cohomology groups of its inverse image sheaf j∗F . As we will not require
the full scheme structure we will assume that X is a Noetherian, sober topological space. We
introduce the following notation.

Notation 3.2.11. Let z ∈ X then we denote by Xz the subspace of X consisting of those points
x ∈ X such that z ∈ {x}, or equivalently, the intersection all open sets containing z. y

Lemma 3.2.12. Any open subset U ⊂ X is sober, and the map sending any irreducible closed
subset Z ⊂ U to Z is a bijection between irreducible closed subsets of U and irreducible closed
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subsets of X whose generic point is in U .

Proof. The map taking points in U to their closure (in U) is obviously injective, because for any
two points x, y ∈ U such that x 6= y there is a closed set Y ⊂ X such that w.l.o.g. x ∈ Y, y 6= Y

and thus x ∈ Y ∩ U, y 6= Y ∩ U . To see surjectivity, let Z be an irreducible closed subset in U ,
then there exists a unique point z in X such that Z = {z}; any open set V such that V ∩Z 6= ∅
must contain z because otherwise the closed set X \ V would contain all of Z, so we see that
z ∈ U . The second part of the statement is now clear.

Lemma 3.2.13. For any point z ∈ X the subspace Xz is sober.

Proof. We see that the map taking points in Xz to their closure is injective by an analogous
argument as in the previous lemma. To check surjectivity, let Z be an irreducible closed subset
of Xz, then in the proof of the previous lemma we saw that any open subset intersecting Z must
contain its generic point, and therefore Xz must contain its generic point.

A key ingredient in the proof of Lemma 3.2.40 is the following lemma.

Lemma 3.2.14. Let z ∈ X and denote by j : Xz ↪→ X the canonical inclusion, then for any
sheaf F on X, the presheaf j†F is a sheaf.

Proof. Because X is Noetherian it is enough to show for any open subset U ⊆ Xz that j†F
satisfies the sheaf condition for a finite cover {Ui}ni=1 of U by open subsets. By Proposi-
tion 3.1.1 the presheaf j†F is separated, so it is enough to show for any family of sections
(si) ∈

∏n
i=1 j

†F (Ui), such that si|Ui∩Uj = sj |Ui∩Uj for all i, j ∈ {1, . . . , n} that there exists
an element s ∈ j†F (U) such that s|Ui = si for all i ∈ {1, . . . , n}. So let (si) ∈

∏n
i=1 j

†F (Ui)

be a family of sections as above, then there exist open sets V1, . . . , Vn ⊆ X and a family of
sections (ti) ∈

∏n
i=1 F (Vi) such that Ui = Xz ∩ Vi and si = [(ti, Vi)] for all i ∈ {1, . . . , n};

furthermore, for each pair (i, j) in {1, . . . , n} there exists an open subset Wij ⊆ Vi ∩ Vj such
that Ui ∩ Uj = Xz ∩Wij and ti|Wij = tj |Wij . Denote by z1, . . . , zm the generic points of the
irreducible components of the sets (Vi ∩ Vj) \ Wij for all pairs (i, j) in {1, . . . , n}, and write
Z := {z1} ∪ · · · ∪ {zm}, where the closures are taken in X. We claim that Z ∩Xz = ∅; indeed,
if this were not the case, then there would exist an element zi such that {zi} ∩Xz 6= ∅ and we
would have:

Xz ∩ {zi} 6= ∅ ⇐⇒ ∀ U 3 z : U ∩ {zi}
⇐⇒ ∀ U 3 z : zi ∈ U
⇐⇒ zi ∈ Xz,

but this would contradict the fact that (Vi∩Vj \Wij)∩Xz = ∅ for each pair (i, j) in {1, . . . , n}.
Now, si = [(ti|Vi\Z , Vi \Z)] for each i ∈ {1, . . . , n}, and (ti|Vi\Z)|Wij\Z = (tj |Vj\Z)|Wij\Z , so there
exists an element t ∈ F ((V1 ∪ · · · ∪ Vn) \ Z) such that t|Vi\Z = ti|Vi\Z for each i ∈ {1, . . . , n};
setting s := [(t, (V1 ∪ · · · ∪ Vn) \ Z)] we have si = s|Ui for each i ∈ {1, . . . , n}.

By applying Proposition 3.1.2 we obtain the following corollary:

Corollary 3.2.15. If F is a flasque sheaf, then so is j†F .
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3.2.2 Local cohomology of local rings

In this subsection A denotes a ring, and M an A-module.

Dimension of modules

Definition 3.2.16. The dimension of M is the dimension of A/Ann(M), and is denoted by
dimM . y

By [Bou61, Prop. II.4.17] we see that if M is finitely generated then

dimM = dim(suppM) ≤ dimA.

Example 3.2.17. Viewing A as a module over itself, we see that dimA = dim(suppA) =

dim(SpecA), so that the dimension of A coincides with its dimension in the sense of Definition
3.1.3. y

Convention 3.2.18. In light of Example 3.2.17 we will simply speak of the dimension of a ring,
that is, we will not distinguish between its dimension in the sense of Definition 3.1.3 and its
dimension in the sense of Definition 3.2.16. y

Depth

Definition 3.2.19. An M -regular sequence is a sequence of elements x1, . . . , xn ∈ A such that
x1 is not a zero-divisor for M and for each i ∈ {2, . . . , n} the element xi is not a zero-divisor for
M/(x1, . . . , xi1). y

Definition 3.2.20. Suppose that A is Noetherian and local with maximal ideal m, and that
M is finitely generated, then the depth of M is the length of the longest M -regular sequence
contained in m. y

Proposition 3.2.21. [EGA IV1, Prop. 16.4.6.ii] Suppose that A is Noetherian and local with
maximal ideal m, and that M is finitely generated, then

depthM ≤ dimM.

Regular local ring

Proposition 3.2.22. [EGA IV1, Prop. 17.1.1] Suppose that A is Noetherian and local with
maximal ideal m. Let n be the dimension of A, then the following are equivalent:

(I) The dimension of the A/m-vector space m2/m is n.

(II) The ideal m may be generated by n elements.

(III) The ideal m may be generated by a sequence of elements which form an A-regular sequence.
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Definition 3.2.23. Assume that A is local and Noetherian of dimension n, then we say that A
is a regular local ring if it satisfies the equivalent properties of Proposition 3.2.22. y

Corollary 3.2.24. If A is a regular local ring, then depthA = dimA.

Definition 3.2.25. Suppose that A is Noetherian and that M is finitely generated, then M is
called Cohen-Macaulay if for every prime ideal p ∈ SpecA we have depthMp = dimMp. y

Remark 3.2.26. Cohen-Macaulay modules are extensively studied in their own right; see e.g.
[BH93]. y

Example 3.2.27. Regular local rings of dimension 0 are exactly fields and regular local rings
of dimension 1 exactly DVRs. y

Theorem 3.2.28 (Auslander-Buchsbaum). [Mat89, Th. 20.3] Every regular local ring is a UFD.

Vanishing of local cohomology groups

Theorem 3.2.29 (Grothendieck). [SGA2, Ex. III.3.4 & Th. 5.3.1] Assume that A is Noetherian
and local with maximal ideal m, and that M is finitely generated, then

H i
{m}(M) ∼= 0 if i /∈ [depthM,dimM ] and

H i
{m}(M) � 0 if i = dimM or i = depthM .

Corollary 3.2.30. If M is Cohen-Macaulay, then H i
{m}(M) vanishes for all i ≥ 0 except for

i = dimM = depthM .

3.2.3 The Cousin resolution

As outlined in the introduction of this thesis, the first step in the construction of the pro-
algebraic resolution is to construct a certain flasque resolution of every sheaf associated to every
commutative algebraic k-group. Now, for any Abelian sheaf F on a locally Noetherian sober
topological space X one may construct the so-called Cousin complex C∗ of flasque sheaves on X
together with an augmentation morphism F → C∗ (viewing F as cochain complex concentrated
in degree 0). The Cousin complex is characterised up to unique isomorphism by the following
three properties:

(a) For each i ≥ 0 and for each x ∈ Xi there exists an Abelian group Mx such that we have
Ci ∼=

⊕
i∈Xi(ix)∗(Mx), where ix denotes the canonical inclusion {x} ↪→ X.

(b) For each i ≥ 0 the support of H i(C∗) lies in
⋃
j≥i+2X

i.

(c) The support of the kernel of the morphism F → H0(C∗) lies in
⋃
j≥1X

i and the support
the cokernel lies in

⋃
j≥2X

i.
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(see [Har66, Prop. IV.2.3])1.
The Cousin complex is named after Pierre Cousin who studied certain questions arising in sev-
eral complex variables in [Cou95] which were later addressed using cohomological methods in the
1950s (see e.g. [GR65, §I.E & §VIII.A]); the complex defined in [Har66] is a generalisation of the
algebro-geometric analogue of a certain flasque resolution arising in these cohomological invest-
igations which we discuss below in Example 3.2.33. The Cousin resolution is sometimes called
the “Gersten resolution” or “Gersten-Quillen resolution” (e.g. in [Blo10]) after Steven Gersten,
who defined an analogous complex in algebraic K-theory in [Ger73], for which he conjectured
a certain exactness result, and after Daniel Quillen who provided a partial verification of this
conjecture in [Qui73].
Returning to the question of resolving Abelian sheaves, we see from the properties character-
ising the Cousin complex of F up to unique isomorphism that F possesses at most one resol-
ution where for every i ≥ 0 the i-th sheaf is of the form

⊕
x∈Xi(ix)∗(Mx) for suitable Abelian

groups Mx. We check the uniqueness of the groups Mx (x ∈ X) by hand: If we plug this
resolution into lim−→x∈Uopen

Γ
U∩{x}(U,F |U ) for a given x ∈ X to compute its derived functor

lim−→x∈Uopen
H i
U∩{x}

(U,F |U ) (filtered colimits of Abelian groups are exact, see [KS06, Th. 3.1.6])

we see that lim−→x∈Uopen
H i
U∩{x}

(U,F |U ) is isomorphic to Mx if x ∈ Xi and isomorphic to 0

otherwise, that is, such a sheaf F possesses the following property:

Definition 3.2.31. A sheaf F on a locally Noetherian, sober topological space X is called
Cohen-Macaulay if for every x ∈ X :

lim−→
x∈Uopen

H i
U∩{x}(U,F |U ) ∼= 0 (i 6= codim {x}).

y

Remark 3.2.32. Let M be a finitely generated module over a Noetherian ring, then we see that
M̃ is Cohen-Macaulay iff M is Cohen-Macaulay (see Definition 3.2.26). y

It turns out the converse is also true; that is, the Cousin complex of a Cohen-Macaulay sheaf
is a flasque resolution (see [Har66, Prop. IV.2.6]). The rest of this subsection deals with proving
this converse statement using only fairly elementary methods (in particular avoiding spectral
sequences). We will assume that X is Noetherian and we will construct a complex of sheaves
F → F 0 → F 1 → · · · on X such that F i is flasque with supports in Xi for every i ≥ 0; it is
exact when F is Cohen-Macaulay, so in this case it coincides with the Cousin resolution. Our
construction is based on [MVW06, Th. 24.11].
Before we begin we give the following motivating example.

Example 3.2.33 (Grothendieck). [Gro57, §3.4] Let X be an irreducible, Noetherian, regular

1The descending chain of subsets X =
⋃

`≥0 X
` ⊇

⋃
`≥1 X

` ⊇ · · · is called the arithmetic filtration of X (see
e.g. [Gro69]) and the condition cited above may be formulated as Ci

x
∼= 0 for every x /∈

⋃
`≥i X

` \
⋃

`≥i+1 X
` and

every i ≥ 0. The complex discussed in [Har66, Prop. IV.2.3] is constructed for any filtration X = Z0 ⊇ Z1 ⊇ · · ·
such that for every ` ≥ 0 the set Z` is closed under specialisation and such that every point in Z` \ Z`+1 is
maximal (w.r.t. to specialisation).

45



scheme, then the Cousin resolution of O×X is given by the so-called divisor sequence

O×X → K×X → Z1
X , (3.3)

which we now proceed to describe.
The presheafKX sends every non-empty open subset ofX toK(X), the field of rational functions
on X, and the empty set to 0. To see that KX is a flasque sheaf it is a enough to note that it
is the skyscraper sheaf at the generic point of X associated to K(X).
Next, for every open subset U ⊆ X the group of Weil divisors on U may be defined2 as

Z1
X(U) :=

⊕
x∈U1

Z.

For every two open subsets V ⊆ U ⊆ X there is a restriction homomorphism Z1
X(U)→ Z1

X(V )

given by
∑

x∈U1 nx 7→
∑

x∈V 1 nx. It is straightforward to check that the maps U 7→ Z1
X(U)

together with the restriction morphisms just described form a presheaf, which we again denote
by Z1

X . Similarly as for KX we see that Z1
X is a flasque sheaf by noting that it is canonically

isomorphic to the coproduct of skyscraper sheaves
∐
x∈X1 Zx.

We now describe the morphisms of the divisor sequence.
The map O×X → K×X is simply the restriction of the canonical inclusion OX ↪→ KX .
To construct the morphism K×X → Z1

X we first recall the following fact: Let F and G be
sheaves (of sets) on a space S, then to define a morphism F → G, it is enough to specify
maps F (U)→ G(U) compatible with the respective restriction maps of F and G for some basis
of the topology of S (see e.g. [EGA I, §0.3.2]). Now, let U ⊆ X be an open affine subset of
X, and A a ring such that U ∼= SpecA. Firstly we note that Z1

X(U) ∼=
⊕

p∈SpecA, ht(p)=1 Z
(see Proposition 3.1.9), and secondly that for all p ∈ SpecA such that ht(p) = 1 the ring Ap

is a regular local ring of dimension 1, that is, a DVR. Via the composition of the canonical
homomorphisms A

∼=−→ OX(U) ↪→ K(X) we may view A and all its localisations as subrings
of K(X) ∼= FracA; then to each p ∈ SpecA such that ht(p) = 1 there corresponds a unique
valuation ordp : K(X)× → Z, such that Ap =

{
f ∈ K(X) ordp(f) ≥ 0

}
∪{0}. Every Noeth-

erian ring possesses a finite number of minimal prime ideals, and thus every element f ∈ A\{0}
is contained in at most finitely many prime ideals of height one, since these are the minimal
non-zero prime ideals of A containing f , and these correspond to the minimal prime ideals of
A/(f). We may now define a homomorphism K(X)×

⊕ ordp−−−−→
⊕

p∈SpecA, ht(p)=1 Z, and thus a
morphism K(X)× → Z1

X(U) for each open affine subset U of X. It is somewhat tedious but
straightforward to show that this family of homomorphisms is compatible with the restriction
homomorphisms of KX and Z1

X . For each prime ideal p ∈ SpecA we have A× ⊆ A×p and thus
we obtain a cochain complex as in (3.3).
We must now verify that this complex is exact.
It is exact at O×X , since O×X → K×X is a monomorphism.

2This definition is equivalent to the usual definition of Weil divisors (when restricted to Noetherian schemes),
as may be found e.g. in [EGA IV4, §21.6.3].
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To see that the complex (3.3) is exact at K×X , let x be any point in X, U ∼= SpecA an affine
subset of X containing x, and px the prime ideal in SpecA corresponding to x, then, localising
at x, we obtain the sequence A×px ↪→ K(X)×

⊕ ordp−−−−→
⊕

p∈SpecApx , ht(p)=1 Z from the sequence

A× ↪→ K(X)×
⊕ ordp−−−−→

⊕
p∈SpecA, ht(p)=1 Z. Now, any Noetherian integral domain B is integrally

closed iff B =
⋂

p∈SpecB, ht(p)=1Bp (viewing B and its localisations as subrings of FracB) (see
[Rei95, Th. 8.10]), and by Theorem 3.2.28 every regular local ring is a UFD, and a fortiori an
integrally closed integral domain. Thus for every element f/g ∈ (FracApx)× ∼= (FracA)× ∼=
K(X)× we have ⊕ ordp f/g = 0 iff f/g is contained in (Apx)×p ∼= A×p for all p ∈ SpecApx of
height 1 iff f/g ∈ A×px .
To verify exactness at Z1

X let x, U, A and px be as before; we must show that
K(X)× →

⊕
p∈SpecApx , ht(p)=1 Z is surjective. Now, any Noetherian integral domain B is a

UFD iff all its prime ideals of height one are principal (see [Mat89, Th. 20.1]), and thus, if we
assume that B is normal, then (FracB)× →

⊕
p∈SpecB, ht(p)=1 Z is surjective iff B is a UFD. We

have already mentioned, that by Theorem 3.2.28 Apx is a UFD, so we are done. y

Remark 3.2.34. The sheaf of Weil divisors may be defined for arbitrary locally Noetherian
schemes, and if moreover the scheme is normal, one can construct a cochain complex like the
one in Example 3.2.33 (see [EGA IV4, §21.6.3]), which is again exact iff all the stalks of the
structure sheaf of the scheme are UFDs (see [EGA IV4, Th. 21.6.9]). y

Until the end of the section X will denote a Noetherian, sober space and F a sheaf on X.
We begin with a few preliminary constructions.

Preliminary constructions

Let i, ` ∈ N, then there is a canonical homomorphism

lim−→
T,Z closed⊆X:

codimT>`,
codimZ=`

H i
Z\T (X \ T, F |X\T )→

∐
x∈X`

lim−→
x∈Uopen

H i
U∩{x}(U,F |U ) (3.4)

natural in F , which we now construct.
First, we show that (T,Z) 7→ H i

Z\T (X \T, F |X\T ) is a functor, so that it makes sense to speak of
the colimit lim−→H i

Z\T (X \T, F |X\T ). To this end, let (T1, Z1), (T2, Z2) be pairs of closed subsets
of X such that codimT1, codimT2 > `, codimZ1 = codimZ2 = ` and T1 ⊆ T2, Z1 ⊆ Z2. Setting
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i = 0 we obtain the following diagram, which commutes by the universal property of kernels:

Γ(X \ (T1 ∪ Z1), F ) Γ(X \ (T2 ∪ Z1), F )

Γ(X \ (T1 ∪ Z2), F ) Γ(X \ (T2 ∪ Z2), F ).

Γ(X \ T1, F )

Γ(X \ T1, F )

Γ(X \ T2, F )

Γ(X \ T2, F )

ΓZ1\T1(X \ T1, F ) ΓZ1\T2(X \ T2, F )

ΓZ2\T1(X \ T1, F ) ΓZ2\T2(X \ T2, F )

This provides us with a homomorphism ΓZ1\T1(X \ T1, F )→ ΓZ2\T2(X \ T2, F ) (it is in fact the
canonical morphism (3.1)). If we consider a further pair of closed subsets (T3, Z3) of X such that
codimT3 > `, codimZ3 = ` and T2 ⊆ T3, Z3 ⊆ Z2, and then construct the analogous homo-
morphism ΓZ1\T1(X\T1, F )→ ΓZ3\T3(X\T3, F ), we see that this morphism may also be obtained
from composing ΓZ1\T1(X \ T1, F ) → ΓZ2\T2(X \ T2, F ) and
ΓZ2\T2(X \ T2, F )→ ΓZ3\T3(X \ T3, F ), as the following diagram commutes:

ΓZ1\T1(X \ T1, F ) ΓZ1\T2(X \ T2, F ) ΓZ1\T3(X \ T3, F )

ΓZ2\T1(X \ T1, F ) ΓZ2\T2(X \ T2, F ) ΓZ2\T3(X \ T3, F )

ΓZ3\T1(X \ T1, F ) ΓZ3\T2(X \ T2, F ) ΓZ3\T3(X \ T3, F ).

Replacing F by an injective resolution in the two diagrams above and taking cohomology of
the resulting cochain complexes we conclude that (T,Z) 7→ H i

Z\T (X \T, F |X\T ) is a functor for
i ≥ 0.
Now we show that for all i, ` ≥ 0 the group

∐
x∈X` lim−→H i

U∩{x}
(U,F |U ) may be realised as the

vertex of a cocone on the functor (T,Z) 7→ H i
Z\T (X \ T, F |X\T ), so that (3.4) is then given

by the universal property of lim−→H i
Z\T (X \ T, F |X\T ). We again reduce to the case i = 0. For

every pair of closed subsets (T,Z) of X such that codimT > `, codimZ = ` and for every
x ∈ (Z \ T )` there is a canonical homomorphism ΓZ\T (X \ T, F ) → Fx given by composing
ΓZ\T (X \ T, F ) ↪→ Γ(X \ T, F ) → Fx; we must show that this homomorphism factors through
lim−→Γ

U∩{x}(U,F ) ↪→ Fx. Denote by Z1, . . . , Zn the irreducible components of Z \ T other than

{x}\T . There then exists an open neighbourhood U of x contained in X\T such that U∩Zi = ∅
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for all i ∈ {1, . . . , n} (e.g. (X \ T ) \ (Z1 ∪ · · · ∪ Zn)). As the diagram

Γ(X \ T, F ) Γ((X \ T ) \ Z,F )

Γ(U,F ) Γ(U \ {x}, F )

commutes, the homomorphism Γ(X \ T, F ) → Γ(U,F ) then restricts to a homomorphism
ΓZ\T (X \ T, F )→ Γ{x}∩U (U,F ). We thus obtain a homomorphism

ΓZ\T (X \ T, F )→
∏

x∈(Z\T )`

lim−→
x∈Uopen

Γ
U∩{x}(U,F ).

Now the set (Z \ T )` is finite (every {x} \ T with x ∈ (Z \ T )` is an irreducible component of
Z ∩ (X \ T )), so that∐

x∈(Z\T )`

lim−→
x∈Uopen

Γ
U∩{x}(U,F ) ↪→

∏
x∈(Z\T )`

lim−→
x∈Uopen

Γ
U∩{x}(U,F )

is an isomorphism; composing

ΓZ\T (X \ T, F )→
∐

x∈(Z\T )`

lim−→
x∈Uopen

Γ
U∩{x}(U,F ) ↪→

∐
x∈X`

lim−→
x∈Uopen

Γ
U∩{x}(U,F )

yields a homomorphism

ΓZ\T (X \ T, F )→
∐
x∈X`

lim−→
x∈Uopen

Γ
U∩{x}(U,F ). (3.5)

It now remains to show that for any two pairs (T1, Z1), (T2, Z2) such that T1 ⊆ T2 and Z1 ⊆ Z2

the triangle ∐
x∈X` lim−→ x∈Uopen

Γ
U∩{x}(U,F )

ΓZ1\T1(X \ T1, F ) ΓZ2\T2(X \ T2, F )

commutes. First we note that both arrows with target
∐
x∈X` lim−→Γ

U∩{x}(U,F ) factor through∐
x∈(Z2\T1)` lim−→Γ

U∩{x}(U,F ), which is isomorphic to
∏
x∈(Z2\T1)` lim−→Γ

U∩{x}(U,F ), so that it is
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enough to show that for every x ∈ (Z1 \ T1)` the triangle

lim−→ x∈Uopen
Γ
U∩{x}(U,F )

ΓZ1\T1(X \ T1, F ) ΓZ2\T2(X \ T2, F )

commutes; but this is immediate as this triangle is just the restriction of the triangle

Fx

Γ(X \ T1, F ) Γ(X \ T2, F ).

The posets
{
T ⊆ X T closed, codimT > `

}
and

{
Z ⊆ X Z closed, codimT = `

}
(with

the ordering given by inclusion) are filtered, and their product is then also filtered. As both
filtered colimits and coproducts are exact in Ab (see [KS06, Cor. 3.1.7]) the functors
F 7→ lim−→ΓZ\T (X \ T, F |X\T ) and F 7→

∐
x∈X` lim−→Γ

U∩{x}(U,F |U ) are left exact; the homo-
morphism (3.4) for i > 0 is obtained by deriving these two functors.

Lemma 3.2.35. The homomorphism (3.4) is an isomorphism.

Proof. We begin with the following general observation: Let (T,Z) be a pair of closed subsets
of X such that codimT > `, codimZ = `, and denote by Z1, . . . , Zm, Z

′
1, . . . , Z

′
n the irreducible

components of Z \ T , where codimZ1 = · · · codimZm = ` and codimZ ′1 = · · · = codimZ ′n > `;
now, let U be an open subset of X intersecting all the irreducible components of Zj but none
of the irreducible components Z ′j , then if we set T ′ := (Z \ U) ∪ T , which is closed and of
codimension > `, we have U ∩ Z = Z \ T ′ so that by the excision theorem (Th. 3.2.7) we have
a canonical isomorphism H i

Z∩U (U,F |U ) ∼= H i
Z\T ′(X \ T

′, F |X\T ′) for all i ≥ 0. Such a subset U
may always be found; in fact, it may be chosen such that the sets U ∩ Zi are pairwise disjoint
by taking e.g. the complement of (

⋃
j 6=k Zj ∩ Zk) ∪ (

⋃
j Z
′
j) ∪ T in X.

Now we show that the homomorphism is injective. Let s be an element of the kernel of (3.4), then
there exist a pair (T,Z) of closed subsets of X with codimT > `, codimZ = ` and an element
t ∈ H i

Z\T (X \ T, F |X\T ) such that t gets mapped to s (see [KS06, Prop. 3.1.3. & Cor. 3.1.5]).
We denote by Z1, . . . , Zn the irreducible components of Z \ T of codimension `, then by the
observation at the beginning of this proof there exists a closed subset T ′ of codimension > `

containing T such that the sets Zi \T ′ are non-empty and pairwise disjoint; in fact, by the same
token we may chose T ′ sufficiently large such that s|X\T ′ = 0 and thus s = 0.
Finally, to see surjectivity let x ∈ X` and U an open neighbourhood of x, then, if we set
T := {x} \ U , we see that H i

U∩{x}
(U,F |U ) is canonically isomorphic to H i

{x}\T
(X \T, F |X\T ) by
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the excision theorem (Theorem 3.2.7). Thus any element in lim−→H i
U∩{x}

(U,F |U ) and therefore

any element in
∐
x∈X` H i

U∩{x}
(U,F |U ) is in the image of (3.4).

For for all i, ` ≥ 0 we have a canonical homomorphism

lim−→
T closed⊆X:
codimT=`+1

H i(X \ T, F |X\T )→ lim−→
T closed⊆X:
codimT>`

H i(X \ T, F |X\T ) (3.6)

induced by the inclusion{
T ⊆ X T closed, codimT = `+ 1

}
⊆
{
T ⊆ X T closed, codimT > `

}
,

which is an isomorphism by [KS06, Prop. 2.5.2].
Similarly, we obtain a homomorphsim

lim−→
T,Z closed⊆X:

codimT>`
codimZ=`

H i(X \ (T ∪ Z), F |X\(T∪Z))→ lim−→
Z closed⊆X:
codimZ=`

H i(X \ Z,F |X\Z) (3.7)

induced by the order preserving map{
(T,Z) ⊆ X ×X

T,Z closed,
codimT > `, codimZ = `

}
→

{
Z ⊆ X Z closed, codimZ = `

}
(T,Z) 7→ T ∪ Z

(recall that the empty set has codimension ∞), which is again an isomorphism by [KS06,
Prop. 2.5.2].

Notation 3.2.36. For any i, ` ∈ N we write

H i(X`) := lim−→
T closed⊆X:
codimT=`+1

H i(X \ T, F |X\T ).

y

Lemma 3.2.37. For all i ≥ 0 we have H i(X−1, F ) ∼= 0.

Proof. The lemma is a corollary of the following result: Let I be a small category containing
a final object, and let C be a category, then for any functor A : I → C the colimit of A exists
and is isomorphic to A(1). This is easily check by hand; alternatively, one could apply [KS06,
Prop. 2.5.2] to see that the inclusion functor {1} ↪→ I is cofinal. The final object in the category
of all closed subsets of X of codimension 0 is X itself so we have H i(X−1, F ) ∼= H i(X \X,F ) ∼=
H i(∅, F, ) ∼= 0.

51



Constructing the complex associated to F

We begin by constructing the complex of global sections of the complex associated to F . For
any closed subsets T and Z of X we obtain the long exact sequence

H1
Z(X \ T, F ) · · ·

0 H0
Z(X \ T, F ) H0(X \ T, F ) H0(X \ (T ∪ Z), F )

by Proposition 3.2.8. By taking the filtered colimit of such long exact sequences over closed
subsets T,Z ⊆ X such that codimZ = `, codimT > ` we then obtain a long exact sequence

∐
x∈X`

lim−→H1
U∩{x}(U,F |U ) · · ·

0
∐
x∈X`

lim−→H0
U∩{x}(U,F |U ) H0(X`, F ) H0(X`−1, F )

(3.8)

via the isomorphisms (3.4), (3.6), (3.7) (recall that filtered colimits are exact in Ab (see [KS06,
Cor. 3.1.7])). By Lemma 3.2.37 and by setting ` = 0 in (3.8) we see that for all i ≥ 0:∐

x∈X0

lim−→H i
U∩{x}(U,F |U ) ∼= H i(X0, F ). (3.9)

There is a homomorphism Γ(X,F ) → H0(X0, F ) given by choosing any closed subset T of
codimension 1 and then composing Γ(X,F )→ Γ(X \ T, F )→ H0(X0, F ); this homomorphism
is independent of the choice of T , for if we choose another closed subset T ′ of codimension 1,
then the following diagram commutes:

Γ(X \ T, F )

Γ(X,F ) Γ(X \ (T ∪ T ′), F ) H0(X0, F )

Γ(X \ T ′, F ).
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Now by splicing together the exact sequences

H0(X0, F )→
∐
x∈X1

lim−→H1
U∩{x}(U,F |U )→ H1(X1, F )

H1(X1, F )→
∐
x∈X2

lim−→H2
U∩{x}(U,F |U )→ H2(X2, F )

· · ·

and
Γ(X,F )→ H0(X0, F ) ∼=

∐
x∈X0

lim−→H0
U∩{x}(U,F |U )

(see Lemma 3.2.37) we obtain a cochain complex of Abelian groups

Γ(X,F ) →
∐
x∈X0

lim−→H0
U∩{x}(U,F |U ) →

∐
x∈X1

lim−→H1
U∩{x}(U,F |U ) → · · · . (3.10)

(To see that d2 = 0 for the first two homomorphisms note that Γ(X,F ) → H0(X0, F ) factors
through H0(X1, F )→ H0(X0, F ).)
For every i ≥ 0 the Abelian group

∐
x∈Xi lim−→H i

U∩{x}
(U,F |U ) is the global section of the presheaf

F i : Ouvop
X →Ab

V 7→
∐
x∈V i

lim−→
U3x

open in V

H i
U∩{x}(U,F |U ).

(3.11)

Just as in Example 3.2.33 we see that the presheaves F i are flasque sheaves by noting that they
are canonically isomorphic to the coproduct of skyscraper sheaves

∐
x∈Xi ix(lim−→H i

U∩{x}
(U,F |U )),

where for every x ∈ X the map ix : {x} ↪→ X denotes the canonical inclusion. Repeating the
construction of (3.10) for all open subsets V ⊆ X we obtain a complex of sheaves which which
we denote by

F 0 → F 1 → F 2 → · · · (3.12)

together with an augmentation map F → F 0.

Proposition 3.2.38. The above construction is functorial and additive in F .

Proof. Let F ′, F ′′ be Abelian sheaves onX and let ϕ : F ′ → F ′′ be a morphism, then functoriality
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follows from the commutativity of

H i(Xi, F
′)

∐
x∈Xi+1

lim−→H i+1

U∩{x}
(U,F ′|U ) H i+1(Xi+1, F

′)

H i(Xi, F
′′)

∐
x∈Xi+1

lim−→H i+1

U∩{x}
(U,F ′′|U ) H i+1(Xi+1, F

′′)

for i ≥ 1 and

Γ(X,F ′) H0(X0, F
′) ∼=

∐
x∈X0 lim−→H0

U∩{x}
(U,F ′|U )

Γ(X,F ′′) H0(X0, F
′′) ∼=

∐
x∈X0 lim−→H0

U∩{x}
(U,F ′′|U ),

which in turn follows from the commutativity of

H i(X \ (T ∪ Z), F ′) H i+1
Z (X \ T, F ′) H i+1(X \ T, F ′)

H i(X \ (T ∪ Z), F ′′) H i+1
Z (X \ T, F ′′) H i+1(X \ T, F ′)

and
Γ(X,F ′) H0(X \ T, F ′)

Γ(X,F ′′) H0(X \ T, F ′′)

for all i ≥ 0 and all closed subsets T,Z ⊆ X.
Additivity follows from the additivity of local cohomology functors, filtered colimits (see [KS06,
Cor. 3.1.7]) and coproducts.

Before we can prove that the sequence F → F 0 → F 1 → · · · is exact when F is Cohen-
Macaulay we need Lemma 3.2.40 which in turn relies on the following lemma.

Lemma 3.2.39. Let A, B be Abelian categories, F,G : A→ B left exact functors and η : F ⇒ G

a natural transformation. Assume that A has enough injective objects, then η is an isomorphism
iff its restriction to the full subcategory of A spanned by injective objects is an isomorphism.

Proof. Let X ∈ A and let I∗ be an injective resolution of X, then we obtain the commutative
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diagram
F (I2) G(I2)

F (I1) G(I1)

F (X) G(X),

∼=

∼= (3.13)

and ηX : F (X)→ G(X) must be an isomorphism by the universal property of kernels.

Lemma 3.2.40. Let z ∈ X, then the colimit of the sequence

∐
x∈V `

lim−→
U3x

open in V

H1
U∩{x}(U,F |U ) · · ·

0
∐
x∈V `

lim−→
U3x

open in V

H0
U∩{x}(U,F |U ) H0(V`, F ) H0(V`−1, F )

constructed as in (3.8), where V ranges of over all open neighbourhoods of z, is canonically
isomorphic to

∐
x∈X`

z

lim−→
U3x

open in Xz

H1
U∩{x}(U, j

−1F |U ) · · ·

0
∐
x∈X`

z

lim−→
U3x

open in Xz

H0
U∩{x}(U, j

−1F |U ) H0((Xz)`, j
−1F ) H0((Xz)`−1, j

−1F ),

where j : Xz ↪→ X denotes the canonical inclusion.

Proof. For every ` ≥ 0 we will construct canonical homomorphisms

lim−→
V 3z

∐
x∈V `

lim−→
U3x

open in V

Γ
U∩{x}(U,F |U )→

∐
x∈X`

z

lim−→
U3x

open in Xz

Γ
U∩{x}(U, j

−1F |U ) (3.14)

and
lim−→
V 3z

Γ(V`, F |V )→ Γ((Xz)`, j
−1F ), (3.15)
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and show that the diagram

0 lim−→
V 3z

∐
x∈V `

lim−→Γ
U∩{x}(U,F |U ) lim−→

V 3z
Γ(V `, F |V ) lim−→

V 3z
Γ(V`−1, F |V )

0
∐
x∈X`

z

lim−→Γ
U∩{x}(U, j

−1F |U ) Γ((Xz)`, j
−1F |U ) Γ((Xz)`−1, j

−1F |U )

(3.16)

commutes. The isomorphism between the two long exact sequences in the statement of the
lemma is then obtained by plugging in an injective resolution of F and taking cohomology.
Construction of (3.14). Let ` ≥ 0. As Xz is the intersection of all open subsets of X containing
z we see that

lim−→
V 3z

∐
x∈V `

lim−→
U3x

open in X

Γ
U∩{x}(U,F |U ) ∼=

∐
x∈X`

z

lim−→
U3x

open in X

Γ
U∩{x}(U,F |U ),

so that it is enough to show that for each x ∈ Xz we obtain a homomorphism

lim−→
U3x

open in X

Γ
U∩{x}(U,F |U )→ lim−→

U3x
open in Xz

Γ
U∩{x}(U, j

−1F |U ). (3.17)

The groups in (3.17) can be viewed as subgroups of Fx and j−1Fx respectively and we will show
that the canonical isomorphism

Fx → j−1Fx

[(s, U)] 7→ [(s, U ∩Xz, U)].
(3.18)

restricts to the desired homomorphism; here we express j−1Fx as a quotient of{
(s, U, V ) x ∈ V

open
⊆ Xz, V ⊆ U

open
⊆ X, s ∈ F (U)

}
.

We must show that the image of lim−→Γ
U∩{x}(U,F |U ) under (3.18) lies in lim−→Γ

U∩{x}(U, j
−1F |U ).

Let [(s, U)] ∈ lim−→Γ
U∩{x}(U,F |U ), then s|

U\{x} = 0. To see now that [(s, U ∩ Xz, U)] lies in
lim−→Γ

U∩{x}(U, j
−1F |U ) it is enough to show that there exists an open subset W ⊆ X containing

U ∩X \ {x} such that s|W = 0, so we may simply set W := U \ {x}.
Proof that (3.14) is an isomorphism. Injectivity is automatically satisfied, as (3.14) is the re-
striction of an injective map. To show that every element in lim−→Γ

U∩{x}(U, j
−1F |U ) comes from

an element in lim−→Γ
U∩{x}(U,F |U ) we note that both the functors F 7→ lim−→Γ

U∩{x}(U,F |U ) and
F 7→ lim−→Γ

U∩{x}(U, j
−1F |U ) are left exact (see [KS06, Cor. 3.1.7]), so that by Lemma 3.2.39 we

may assume that F is injective and thus flasque. In this case j−1F is also flasque by Proposition
3.1.2, and thus also Γ{x}j

−1F by [Har67, Lm. 1.6]. Any element in lim−→Γ
U∩{x}(U, j

−1F |U ) ∼=
lim−→Γ{x}j

−1F (U) may thus be represented by a triple of the form (s,X,Xz). By assumption

there exists an open subset W ⊆ X containing Xz \ {x} such that s|W = 0; from this we de-
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duce that supp s ∩Xz ⊆ {x} ∩Xz. Denote by z1, . . . , zn those generic points of the irreducible
components of supp s which lie outside of Xz, then setting U := X \ ({z1} ∪ · · · ∪ {zn}) we have
s|
U\{x} = 0. It is clear by construction that [(s|U , U)] is mapped to [(s,X,Xz)] by (3.18).

Construction of (3.15). First we observe that we have the following isomorphisms:

lim−→
V 3z

Γ(V`, F |V ) = lim−→
V 3z

lim−→
T⊆V

codimT=`+1

Γ(V \ T, F )

∼= lim−→
V 3z

lim−→
T⊆X

codimT=`+1

Γ(V \ T, F )

and

Γ((Xz)`, j
−1F ) = lim−→

T⊆X`
z

codimT=`+1

lim−→
U⊇Xz\T

Γ(U,F )

∼= lim−→
T⊆X

codimT=`+1

lim−→
U⊇Xz\T

Γ(U,F ),

which in both cases result from an easy application of [KS06, Prop. 2.5.2]. The homomorphism
(3.15) is then given by the universal property of lim−→V 3z Γ(V`, F |V ) viewing Γ((Xz)`, j

−1F ) as
the vertex of the cone given by the composition of

Γ(V \ T, F )→ lim−→
U⊇Xz\T

Γ(U,F )→ Γ((Xz)`, j
−1F )

for each open neighbourhood V 3 z in X and every closed subset T ⊆ X of codimension `+ 1.
Explicitly we get

lim−→
V 3z

Γ(V`, F ) → Γ((Xz)`, j
−1F )

[(s, V, T )] 7→ [(s,Xz \ T, V \ T )].

which assemble to form the homomorphism (3.15). Before we can proceed to show that (3.15)
is an isomorphism we must first show that (3.16) commutes.
Commutativity of (3.16). To see that the central square commutes it is enough to show that for
every open neighbourhood V 3 z in X the diagram

lim−→
V⊇U3x

Γ
U∩{x}(U,F |U ) Γ(V`, F )

lim−→
Xz⊇U3x

Γ
U∩{x}(U, j

−1F |U ) Γ((Xz)`, F )

commutes. By the introductory remark of the proof of Lemma 3.2.35 any element in
lim−→Γ

U∩{x}(U,F |U ) may be represented by an element s ∈ Γ
(V \T )∩{x}(V \T, F |V \T ) where T ⊂ V
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is a closed set of codimension `+ 1. Chasing this element around the above diagram we get

[(s, V \ T )] [(s, T )]

[(s,Xz \ T, V \ T )] [(s,Xz \ T, V \ T )].

To see that the rightmost square of (3.16) commutes it is enough to show that for every open
neighbourhood V 3 z in X the diagram

Γ(V`, F |V ) Γ(V`−1, F |V )

Γ((Xz)`, j
−1F ) Γ((Xz)`−1, j

−1F )

commutes. Let T,Z ⊆ X be closed subsets such that codimT = `+ 1 and codimZ = `, and let
s ∈ Γ(V \ T, F ), then chasing s through the above diagram we see

[(s, T )] [(s|V \(T∪Z), T ∪ Z)]

[(s,Xz \ T, V \ T )] [(s|V \(T∪Z), Xz \ (T ∪ Z), V \ (T ∪ Z))].

Proof that (3.15) is an isomorphism. We shall prove this by induction. For ` = −1 we have
lim−→V 3z Γ(X`, F ) ∼= Γ((Xz)`, F ) ∼= 0 so that (3.15) is trivially an isomorphism. Now, assume that
(3.15) is an isomorphism for a given ` ≥ 0. By Lemma 3.2.39 we may assume that F is injective;
in this case we may complete the diagram (3.16) to a morphism of short exact sequences. If we
plug ` + 1 into (3.16), then the central vertical homomorphism is an isomorphism because the
outer vertical homomorphisms are.

Corollary 3.2.41. The inverse image under j of the complex associated to F is canonically
isomorphic to the complex associated to j−1F .

Corollary 3.2.42. The localisation at z of the complex associated to F is given by the global
sections of the complex associated to j−1F .

Theorem 3.2.43. If F satisfies the Cohen-Macaulay condition, then the complex associated to
F is exact (and is thus isomorphic to the Cousin complex of F ).

Proof. Let d denote the dimension of X. For all ` ≥ 0 the exact sequences (3.8) split into the
exact sequences

0→ H i(X`, F )
∼=−→ H i(X`−1, F )→ 0 (i > ` or i < `− 1)

and

0→ H`−1(X`, F )→ H`−1(X`−1, F )→
∐
x∈X`

lim−→
x∈Uopen

H`
U∩{x}(U,F |U )→ H`(X`, F )→ H`(X`−1, F )→ 0.
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From this and Lemma 3.2.37 we see that for all ` ≥ 0 we have

H`(X`−1, F ) ∼= H`(X`−2, F ) ∼= · · · ∼= H`(X−1, F ) ∼= 0

and
H`(X`+1, F ) ∼= H`(X`+2, F ) ∼= · · · ∼= H`(Xd+1, F ) ∼= H`(X,F ). (3.19)

If we replace X with Xz in the above diagrams we see that the sequences

0→ H`−1((Xz)`−1, j
−1F )→

∐
x∈X`

z

lim−→
x∈Uopen

H`
U∩{x}(U, j

−1F |U )→ H`((Xz)`, j
−1F )→ 0.

are exact for ` ≥ 0 and thus the Cousin complex of F is exact in positive degree. It remains to
show that Fz ∼= j−1F (Xz) is the kernel of j−1F 0(Xz) → j−1F 1(Xz); this follows from the fact
that the natural homomorphism j−1F (Xz)→ H0(X1F ) is an isomorphism, which may be seen
by applying (3.19).

Remark 3.2.44. From the proof of Theorem 3.2.43 one may see explicitly that the cohomology
groups of F (X) → F 0(X) → F 1(X) → · · · are isomorphic to the groups H i(X,F ), by noting
that F (X)→ F 0(X)→ F 1(X)→ · · · is obtained by splicing together the exact sequences

0→ Γ(X,F )→ H0(X0, F )︸ ︷︷ ︸
∼=
∐

x∈X0 lim−→H0
U∩{x}

(U,F |U )

→
∐
x∈X1

lim−→H1
U∩{x}(U,F |U )→ H1(X1, F )→ 0

0→ H1(X,F )→ H1(X1, F )→
∐
x∈X2

lim−→H2
U∩{x}(U,F |U )→ H2(X2, F )→ 0

· · ·

(keeping in mind that the i-th cohomology of a cochain complex may be computed as the kernel
of Cokdi−1 → Coimdi). y
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Part II

Pro-algebraic Resolutions of Regular
Schemes
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Chapter 4

Sheaves Associated to Algebraic
k-Groups are Cohen-Macaulay

Throughout this chapter k denotes an algebraically closed field of characteristic zero and X

denotes a regular k-scheme. All k-groups in this chapter are assumed to be commutative so
“k-group” will mean “commutative k-group”.
In this chapter we prove that sheaves onX associated to algebraic k-groups are Cohen-Macaulay,
so that we obtain a functor AGSk → Ch≥0(ShX) by putting together (2.2) and the functor
associating to any Cohen-Macaulay sheaf on X its Cousin resolution.
We proceed in two steps corresponding to §4.1 & 4.2 respectively. Let G be an algebraic k-
group; in §4.1 we show that proving that GX is Cohen-Macaulay reduces to proving that the
cohomology groups H i

{x}(Spec OX,x, G) vanish for all i 6= dim Spec OX,x. In §4.2 we verify this
assertion by showing that for every regular local ring (A,m) the groups H i

{m}(SpecA,G) vanish
for i 6= dimA.

4.1 Reduction to local cohomology groups of regular local rings

Lemma 4.1.1. Let A be a ring and S ⊆ A a multiplicatively closed subset, and denote by
i : SpecS−1A ↪→ SpecA the canonical inclusion, then the diagram

QCohOSpecA
QCohOSpecS−1A

PShOSpecA
PShOSpecS−1A

i∗

i†

commutes up to canonical isomorphism.

Sketch of proof. Throughout this proof we will only consider sheaves defined on the canonical
basis of any affine scheme, as these correspond uniquely to sheaves on the whole topology (see
e.g. [EGA I, §0.3.2]).
We begin with a few preparations. First we note that if S ⊆ T ⊆ A are multiplicatively closed
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subsets, then there is a unique homomorphism of rings S−1A→ T−1A making the triangle

S−1A T−1A

A

(4.1)

commute. There is a maximal multiplicatively closed subset T containing S such that the
horizontal homomorphism in (4.1) is an isomorphism; this multiplicative subset is called the
saturation of S, and a multiplicative subset is called saturated if it is equal to its saturation. We
will need a further characterisation of saturated multiplicative subsets: A multiplicative subset
is saturated iff it is the complement of the union of prime ideals (see [Kap74, Th. 2]). We thus
see that there is bijection between the saturated multiplicatively closed subsets of A and the
subsets of SpecA which constitute the image of SpecS−1A→ SpecA for some multiplicatively
closed subset S. We denote by MultSpecA the category consisting of such subsets of SpecA

together with inclusions. We may now define the contravariant functor

Multop
SpecA → Ring

ImSpecS−1A→SpecA 7→ S−1A,
(4.2)

where S is saturated, and where morphisms between the rings S−1A are obtained as in (4.1).
These morphisms may also be viewed slightly differently: It is easily seen that the saturated
multiplicative subsets of S−1A are in canonical bijection to the saturated multiplicative subsets
of A containing S; the morphism S−1A → T−1A is the localisation of S−1A with respect to
the multiplicative subset of S−1A corresponding to T . We thus see that for any multiplicative
subset S the basic open subsets of SpecS−1A are objects in MultSpecA.
Similarly as for A, for every A-module we obtain a contravariant functor

Multop
SpecA → Ab

ImSpecS−1A→SpecA 7→ S−1M,
(4.3)

where S is again saturated. For every saturated multiplicative subset S the group S−1M comes
canonically equipped with the structure of an S−1A-module; the collection of these S−1A-
module structures for saturated multiplicative subsets S is compatible with restriction; one
could reasonably speak of a “module over the functor (4.2)”. Finally, we note that given any
further A-module N , a homomorphism of A-modulesM → N induces a homomorphism between
their corresponding modules over (4.2).
After these preparations proving the lemma is easy. Let S ⊆ A be a saturated multiplicatively
closed subset, and let i be as in the statement of the lemma. We first discuss i∗: It is clear
by the characterisation of i∗ in terms of A- and S−1A-modules (see e.g. [EGA I, Cor. I.1.7.7])
that for an A-module M the OSpecS−1A-module i∗(M̃) is isomoprhic to the OSpecS−1A-module
corresponding to the contravariant functor given by restricting (4.3) to the basic open subsets
of SpecS−1A together with the action of the matching restriction of (4.2). We now discuss i†:
Any object in MultSpecA is the intersection of basic open subsets of SpecA; this may be seen

64



by the canonical isomorphism lim−→t∈T At
∼= T−1A for any multiplicatively closed subset T . Now,

let U denote a basic open subset of SpecS−1A, and denote by T the corresponding saturated
multiplicatively closed subset of A. We have Γ(i†M̃, U) ∼= lim−→t∈T Mt

∼= T−1M , and we see that
the functor QCohOSpecS−1A

→ PShOSpecS−1A
simply corresponds to forgetting the action of the

restriction of (4.2) to SpecS−1A.

Proposition 4.1.2. Let x ∈ X, then for every algebraic k-group G and every i ≥ 0 the canonical
homomorphism (see (3.1))

lim−→
U3x

H i
U∩{x}(U,G)→ H i

{x}(Spec OX,x, G) (4.4)

is an isomorphism.

Proof. First we show that if there exist algebraic k-groups G′, G′′ such that G fits into a short
exact sequence

0→ G′ → G→ G′′ → 0

which induces a short exact sequence of Zariski sheaves, then the statement of the proposition for
G follows from the statement of the proposition for G′ and G′′. From the short exact sequence

0→ G′X → GX → G′′X → 0,

we obtain the diagram

0 lim−→
U3x

H0
U∩{x}(U,G

′) lim−→
U3x

H0
U∩{x}(U,G) lim−→

U3x
H0
U∩{x}(U,G

′′) lim−→
U3x

H1
U∩{x}(U,G) · · ·

0 H0
{x}(Spec OX,x, G

′) H0
{x}(Spec OX,x, G) H0

{x}(Spec OX,x, G
′′) H1

{x}(Spec OX,x, G
′) · · · .

We may then apply the five lemma to see that the homomorphism (4.4) is an isomorphism for
G and for all i ≥ 0.
By the canonical composition series (2.1) and Propositions 2.4.5 - 2.4.7 we see that it is enough to
check the following four cases: The k-group G is an étale k-group, an Abelian variety, isomorphic
to Ga or isomorphic to Gm. It is also clear that w.l.o.g. we may assume that X is connected;
we denote its generic point by η.
Case 1: G is an étale k-group. As in this case GX is flasque (see Proposition 2.4.2), (4.4) is
trivially an isomorphism for i > 0, so we only need to consider the case i = 0. We check the
two cases dim OX,x = 0 and dim OX,x > 0 separately, which correspond to the cases x = η

and x 6= η. Assume that G corresponds to the discrete group Γ. If x = η, then we have
lim−→Γ

U∩{x}(U,G) = lim−→Γ(U,G) ∼= Γ ∼= Γ(Spec OX,x, G) = Γ{x}(Spec OX,x, G). If x 6= η, then
Γ{x}(Spec OX,x, G) ∼= 0 and for all open neighbourhoods U 3 x we have Γ

U∩{x}(U,G) ∼= 0 by
Example 3.2.3.
Case 2: G is an Abelian k-variety. As in Case 1, the k-groupGX is flasque (see Proposition 2.4.3)

65



so that we need only consider local cohomology groups of degree 0. We assume first that x = η.
By Theorem 2.3.22 and [GW10, Cor. 9.9] the canonical inclusion of any open subscheme U ↪→ X

induces an isomorphism Γ(X,GX)
∼=−→ Γ(U,GX), so it is enough to show that the canonical

morphism SpecK(X)→ X induces an isomorphism Schk(X,G)
∼=−→ Schk(SpecK(X), G).

We first show injectivity. Consider two morphisms ϕ,ψ : X → G such that their restriction to
SpecK(X) coincides. Consider an affine neighbourhood V of ϕ(SpecK(X)) = ψ(SpecK(X)),
isomorphic to SpecB for some finite type k-algebra B, then there exists an affine neighbourhood
U of SpecK(X), isomorphic to SpecA for some k-algebra A, such that ϕ(U), ψ(U) ⊆ V . We
then obtain the diagram

K(X) ∼= FracA A B;
O(ϕ|V )

O(ψ|V )

as A ↪→ FracA is injective, we see that O(ϕ|V ) and O(ψ|V ), and thus ϕ|V and ψ|V agree, and
therefore also ϕ and ψ.
We now show surjectivity. Let ϕ : SpecK(X) → G be a morphism, and consider an affine
neighbourhood U of SpecK(X), which corresponds to some k-algebra A, and an affine open
neighbourhood V of ϕ(SpecK(X)), which is isomorphic to SpecB for some finite type k-algebra
B. The morphism ϕ : SpecK(X) → V then corresponds to homomorphism B → K(X); the
image of this morphism is generated by finitely many elements in K(X), say f1/g1, . . . , fn/gn.
We then see that B → K(X) factors through Ag1···gn , so that ϕ : SpecK(X) → V is the
restriction of a morphism SpecAg1···gn → G, which in turn corresponds to a unique morphism
X → G.
If then x 6= η, then the isomorphism is trivial, just as in the previous case.
Case 3: G is isomorphic to Ga. Let SpecA be an affine neighbourhood of x and p the prime
ideal corresponding to x. Let M be a module over A, then we obtain canonical homomorphisms

Γ{x}(SpecA, M̃)f → Γ
Df∩{x}(Df , M̃)

for any f ∈ A and
Γ{x}(SpecA, M̃)p → Γ{x}(Spec OX,x, (̃Mp)),

which are clearly isomorphisms. We thus obtain isomorphisms

lim−→
f∈A\p

Γ
Df∩{x}(Df , M̃ |Df

) ∼= lim−→
f∈A\p

Γ{x}(SpecA, M̃)f

∼= Γ{x}(SpecA, M̃)p
∼= Γ{x}(Spec OX,x, (̃Mp)),

whose composition coincides with the canonical homomorphism induced by
Γ
Df∩{x}(Df , M̃ |Df

) → Γ{x}(Spec OX,x, (̃Mp)) for all f ∈ A \ p by the previous lemma. By
taking an injective resolution of the sheaf associated to M , applying the left exact functors
N 7→ lim−→Γ

U∩{x}(U, Ñ |U ) and N 7→ Γ{x}(Spec OX,x, (̃Np)) (filtered colimits of Abelian groups
and localisation are exact; see [KS06, Cor. 3.1.7] and [Bou61, Th. II.2.4.1] respectively) to the
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injective resolution, and taking cohomology of cochain complexes we conclude that

lim−→
U3x

H i
U∩{x}(U, M̃ |U ) ∼= H i

{x}(Spec OX,x, (̃Mp))

for all i ≥ 0.
Case 4: G is isomorphic to Gm. Denote by j the canonical morphism Spec OX,x ↪→ X. It is
easily seen that j−1O×X

∼= O×Spec OX,x
. By Example 3.2.33 we know that both O×X and O×Spec OX,x

are Cohen-Macaulay. The statement of the theorem then follows from Corollary 3.2.41 and the
fact that the Cousin complex associated to a Cohen-Macaulay sheaf is unique up to unique
isomorphism (see the introductory discussion of §3.2.3).
Alternatively it is not so difficult to show explicitly that there is a an isomorphism between
the Cousin resolution of O×Spec OX,x

and the inverse image of the Cousin resolution of O×X under
j.

4.2 The Local Cohomology Groups H i
{x}(X,G)

Throughout this section (A,m) denotes a regular local k-algebra withK := FracA, X := SpecA,
x := m, and G an algebraic k-group.
The goal of this chapter is to show that the cohomology groups H i

{x}(X,G) vanish for all i ≥ 0

except i = dimX. In §4.2.1 we characterise these cohomology groups explicitly for dimX = 0, 1.
We then treat the general case in Section 4.2.2, where we reduce to checking different cases of
the group G as in Proposition 4.1.2.

4.2.1 The local cohomology groups H i
{x}(X,G) for dimX = 0, 1

In both the cases dimX = 0, 1 we will need the following long exact sequence (see Proposition
3.2.8):

H2
{x}(X,G) · · ·

H1
{x}(X,G) H1(X,G) H1(X \ {x}, G)

0 H0
{x}(X,G) H0(X,G) H0(X \ {x}, G)

(4.5)

Theorem 4.2.1. If dimX = 0, then

H i
{x}(X,G) ∼=

{
G(A) if i = 0,

0 if i 6= 0.
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Proof. By definitionH0
{x}(X,G) =

{
f ∈ Schk(X,G) supp f = {x}

}
= Schk(X,G) = G(A).

For i ≥ 0 : H i(X \ {x}, G) = H i(∅, G) ∼= 0, and for i > 0 : H i(X,G) ∼= 0 by Theorem 3.1.11;
applying these two results to the exact sequence (4.5) yields that H i

{x}(X,G) ∼= 0 for i > 0.

Theorem 4.2.2. If dimX = 1, then

H i
{x}(X,G) ∼=

{
G(K)/G(A) if i = 1,

0 if i 6= 1.

Proof. By Example ?? H0
{x}(X,G) ∼= 0. By Corollary 3.1.13 and Theorem 3.1.11 H i(X,G) ∼= 0

for all i ≥ 1 and H i(X \ {x}, G) ∼= 0 for all i ≥ 1; applying these two latter results to the exact
sequence (4.5) we see that H i

{x}(X,G) ∼= 0 for all i ≥ 2. We are then left with the short exact
sequence

0→ H0(X,G)→ H0(X \ {x}, G)→ H1
{x}(X,G)→ 0. (4.6)

Since A is an integral domain of dimension one, the schemeX\{x} is integral and has exactly one
point, so it is isomorphic to the spectrum of a field. Viewing A and all its localisations as subrings
of K we see that OX(X \ {x}) =

⋂
p∈SpecA\{m}Ap = A(0) = K, so that X \ {x} is canonically

isomorphic to SpecK, and the morphism X → X \ {x} corresponds to the homomorphism
A → K. Applying this result to the short exact sequence (4.6) yields that H1

{x}(X,G) ∼=
G(K)/G(A).

4.2.2 The local cohomology groups H i
{x}(X,G) for all dimensions

Theorem 4.2.3.
H i
{x}(X,G) ∼= 0 (i 6= dimX).

Proof. First we note that if there exist algebraic k-groups G′, G′′ such that G fits into a short
exact sequence

0→ G′ → G→ G′′ → 0

which induces a short exact sequence of Zariski sheaves, then the statement of the proposition
for G follows from the statement of the proposition for G′ and G′′. Indeed, let

0→ G′X → GX → G′′X → 0,

be the induced short exact sequence of Abelian sheaves, then this is immediately seen by a
simple argument using the long exact sequence

H1
{x}(X,G

′) · · ·

0 H0
{x}(X,G

′) H0
{x}(X,G) H0

{x}(X,G
′′) .

By the canonical composition series (2.1) and Propositions 2.4.5 - 2.4.7 we see that it is enough
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to check the following four cases: The k-group G is an étale k-group, an Abelian variety or
isomorphic to Ga or Gm. As both sheaves associated to étale k-groups and Abelian k-varieties
are flasque (see Propositions 2.4.2, 2.4.3) these cases reduce to the case when dimX = 0 (see
Theorem 4.2.1). If G ∼= Gm, then, as O×X has a flasque resolution of length 1 (see Example
3.2.33), we may reduce to the cases dimX = 0, 1 (see Theorems 4.2.1, 4.2.2). If G ∼= Ga, then
GX ∼= OX so that we may apply Theorem 3.2.22.

Summarising, by the composition series (2.1) we see that we have a canonical sequence of
k-subgroups

Gu ↪→ H ↪→ G,

where H is the maximal affine k-subgroup of G0 and Gu is the maximal unipotent subgroup of
H. We see now that if dimX = 1, then for all i ≥ 0

H i
{x}(X,H)→ H i

{x}(X,G)

is an isomorphism, and that if dimX ≥ 2, then for all i ≥ 0

H i
{x}(X,Gu)→ H i

{x}(X,G)

is an isomorphism.
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Chapter 5

The pro-algebraic resolution

Throughout this chapter k denotes an algebraically closed field of characteristic zero. All k-
groups in this chapter are assumed to be commutative so “k-group” will mean “commutative
k-group”.

5.1 Existence of the pro-algebraic resolution

Theorem 5.1.1. Let X be a connected regular k-scheme, then for every i ≥ 0 the functor

AGSk → Ab

G 7→ Γ(X,CiX,G)

is pro-representable.

Proof. It is enough to show for every regular ring (A,m) over k that the functor

AGSk → Ab

G 7→ HdimA
{m} (SpecA,G)

(5.1)

is pro-representable. Assuming this, denote by JA/k the pro-algebraic k-group representing (5.1),
then we see that for every i ≥ 0 the functor AGSk → Ab, G 7→ Γ(X,CiX,G) is pro-represented
by
∏
x∈Xi JOX,x/k, for we have canonical isomorphisms

PAGSk

( ∏
x∈Xi

JOX,x/k, G

)
∼=
⊕
x∈Xi

PAGSk(JOX,x/k, G)

∼=
⊕
x∈Xi

H i
{x}(Spec OX,x, G),

where the first isomorphism is due the facts that the canonical functor PAGSk → AGSk is
fully faithful and that colimits of functors may be obtained by taking colimits objectwise (see
[KS06, (2.6.2)]).
We now show that (5.1) is left exact, so that pro-representability follows from Corollary 1.1.11
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(the category AGSk is locally small). We will distinguish between the two cases dimA = 0 and
dimA > 0.
Case: dimA = 0. The functor (5.1) is given by G 7→ G(A/m) (see Theorem 4.2.1), so that left
exactness follows from the fact that the section functors of fppf sheaves are left exact.
Case: dimA > 0. We write X := SpecA, x := m and d := dimA. As in several previous proofs
we will rely on the composition series (2.1). We first prove that Hd

{x}(X, ) is left exact assuming
that the functor is left exact on connected algebraic k-groups. Let 0→ G′ → G→ G′′ → 0 be a
short exact sequence of algebraic k-groups, then we obtain the following commutative diagram:

0 0 0

0 π0(G′) π0(G) π0(G′′) 0

0 G′ G G′′ 0

0 (G′)◦ G◦ (G′′)◦ 0

0 0 0.

(5.2)

As Hd
{x}(X, ) is exact on the columns of (5.2) (see Proposition 2.4.5) and maps the top row

to 0 (see Corollary 2.3.3 and Proposition 2.4.2), it is enough to show that the bottom row is
mapped to a kernel. By taking homology of the rows of (5.2) we obtain the following long exact
sequence:

0

H(π0(G′)) H(π0(G)) H(π0(G′′))

H(G′) H(G) H(G′′)

H((G′)◦) H(G◦) H((G′′)◦).

0

As H(G′) ∼= H(G) ∼= H(G′′) ∼= 0 we see that H((G′)◦) ∼= 0 and H(π0(G′)) ∼= H(G◦). In
particular we see that H(G◦) is a finite étale k-group (see Proposition 2.3.25). As (G′)◦ is
connected the image of (G′)◦ → G◦ is connected, so we see that (G′)◦ is canonically isomorphic
to the connected component of the kernel of G◦ → (G′′)◦. We denote this kernel by K. We then
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obtain the diagram

0 Hd
{x}(X, (G

′)◦) Hd
{x}(X,G

◦) Hd
{x}(X, (G

′′)◦)

0 Hd
{x}(X,K

◦) Hd
{x}(X,K) Hd

{x}(X,π0(K))︸ ︷︷ ︸
∼=0

,

∼=
∼=

in which the top row is exact because

0→ Hd
{x}(X,K)→ Hd

{x}(X,G
◦)→ Hd

{x}(X, (G
′′)◦)

is exact by assumption.
We now prove thatHd

{x}(X, ) is left exact on connected algebraic k-groups, assuming it is left ex-
act on connected affine algebraic k-groups. We proceed similarly as before. Let
0 → G′ → G → G′′ → 0 be a short exact sequence of algebraic k-groups, then we obtain
the following commutative diagram:

0 0 0

0 V ′ V V ′′ 0

0 G′ G G′′ 0

0 H ′ H H ′′ 0

0 0 0,

(5.3)

where the bottom row consists of the maximal affine k-subgroups of G′, G and G′′, the top row
consists of the quotient Abelian k-varieties. As Hd

{x}(X, ) is exact on the columns of (5.2) (see
Proposition 2.4.5) and the top row is mapped to 0 by Proposition 2.4.3, it is enough to show
that the bottom row is mapped to a kernel. By taking homology of the rows of (5.2) we obtain
the following long exact sequence:
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0

H(V ′) H(V ) H(V ′′)

H(G′) H(G) H(G′′)

H(H ′) H(H) H(H ′′).

0

As H(G′) ∼= H(G) ∼= H(G′′) ∼= 0 we see that H(H ′) ∼= 0 and H(V ′) ∼= H(H). As the k-group
H(V ′) ∼= H(H) is both affine and projective it is finite étale (see Proposition 2.3.25) and as k
is algebraically closed of characteristic 0 we see that it is constant (see Proposition 2.3.26). We
thus see that H ′ is canonically isomorphic to the connected component of the kernel of H → H ′′

and we se that
0→ Hd

{x}(X,H
′)→ Hd

{x}(X,H)→ Hd
{x}(X,H

′′)

is exact in the same way as in the previous step.
Now we still have to show thatHd

{x}(X, ) takes short exact sequences of affine algebraic k-groups
to kernels. Let

0→ G′ → G→ G′′ → 0

be a short exact sequence of affine algebraic k-groups, then, because morphisms from k-groups
of multiplicative type to unipotent k-groups and vice versa are zero, we see that the sequences

0→ G′m → Gm → G′′m → 0 and 0→ G′u → Gu → G′′u → 0

are exact. Now, both short exact sequences split; the first because the category of algebraic
unipotent k-groups is equivalent to the category of finite k-vector spaces (see Proposition 2.3.48)
and the second because it corresponds to a short exact sequence of finitely generated free Abelian
groups (see Propositions 2.3.32 & 2.3.36), but such groups are projective so we are done.

Notation 5.1.2. Let X be a connected regular k-scheme, then for every i ≥ 0 we denote by
Ji(X) the pro-algebraic k-group representing the functor

AGSk → Ab

G 7→ Γ(X,CiX,G).

y
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Corollary 5.1.3. The functor

AGSk → Ch≥0(Ab)

G 7→ Γ(X,C∗X,G)

is represented by a chain of pro-algebraic k-groups concentrated in non-negative degree.

Proof. For every i ≥ 0 we obtain a diagram

PAGSk(Ji+1(X), ) Γ(X,Ci+1
X, )

PAGSk(Ji(X), ) Γ(X,CiX, ),

∼=

∼=

in which the vertical morphism is a well defined natural transformation by Proposition 3.2.38.
The maps Ji+1(X) → Ji(X) are thus obtained by the fact that the functor PAGSk ↪→ ÂGSk

is fully faithful. It remains to show that the sequence

· · · → Ji+1(X)→ Ji(X)→ Ji−1(X)→ · · ·

is a chain complex, but the corresponding sequence of representable functors

· · · ← PAGSk(Ji+1(X), )← PAGSk(Ji(X), )← PAGSk(Ji−1(X), )← · · ·

is a cochain complex iff it is a cochain complex objectwise and this follows immediately from
the fact that the sequence is isomorphic to

· · · ← Ci+1
X, ← CiX, ← Ci−1

X, ← · · · .

Definition 5.1.4. LetX be a connected regular k-scheme, then J∗(X) is called the pro-algebraic
resolution of X. y

Corollary 5.1.5. Let X be a connected regular k-scheme, then the cokernel of J1(X)→ J0(X)

represents the functor
AGSk → Ab

G 7→ Schk(X,G).

Proof. Let G be an algebraic k-group, then, because representable Abelian presheaves take
cokernels to kernels, we see that PAGSk( , G) takes the cokernel J1(X) → J0(X) → Cokd1 to
Schk(X,G) ↪→ Γ(X,C0

X,G)→ Γ(X,C1
X,G). Functoriality follows from Proposition 3.2.38.

Notation 5.1.6. Let X be a connected regular k-scheme, then we denote the cokernel of
J1(X)→ J0(X) by J−1(X). y
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Remark 5.1.7. Let X be a connected regular k-scheme. It is not necessary to first construct
the resolution J∗(X) in order to construct the pro-algebraic k-group J−1(X). The functor
G 7→ Schk(X,G) is left exact, so we may simply apply Corollary 1.1.11 to obtain J−1(X). y

Remark 5.1.8. We are unaware whether or not the map X 7→ J∗(X) extends to a functor from
connected regular k-schemes to cochains of pro-algebraic k-groups. What is certain is that such
functoriality cannot be deduced from Cousin resolutions of sheaves associated to algebraic k-
groups, because given an algebraic k-group G the map X 7→ C∗X,G is not functorial; consider for
example the case where G = Ga and in which we are given two integral k-algebras A, B as well
as morphism ϕ : SpecA→ SpecB, then, if we write X := SpecA and Y := SpecB, the square

Γ(C0
X,G, X) Γ(C0

Y,G, Y )

Schk(X,G) Schk(Y,G)

would correspond to the square
K(A) K(B)

A B,

which does not commute if B → A is not a monomorphism. y

Remark 5.1.9. The map which assigns to any regular connected k-scheme the pro-algebraic group
J−1(X) may however be extended to a functor due to the universal property of J−1(X). Note
also that this universal property is similar to that of the Albanese variety of a pointed smooth
projective variety over a perfect field (see [Moc12, Th. A.6]). y

5.2 Properties of the pro-algebraic resolution

Theorem 5.2.1. Let X be a connected regular k-scheme, then the pro-algebraic k-groups Ji(X)

are connected and affine for i ≥ 1, and moreover unipotent for i ≥ 2.

Proof. By Theorem 1.4.13 we know that for each i ≥ 0 the group Ji(X) is the filtered limit of
all its algebraic quotients.
We first show that for each i ≥ 1 every algebraic quotient of Ji(X) is connected. Let G be an
algebraic quotient, then PAGSk(Ji(X), π0(G)) ∼=

⊕
H i
{x}(Spec OX,x, π0(G)) ∼= 0, so that the

composition of the morphisms Ji(X)� G� π0(G) and therefore G� π0(G) is zero.
Similarly, we see that for each i ≥ 1 the pro-algebraic k-group is affine, for if G is an algeb-
raic quotient of Ji(X) and V is the unique quotient of G which is an Abelian variety and
such that the kernel of G � V is affine (see Theorem 2.3.24), then PAGSk(Ji(X), V ) ∼=⊕
H i
{x}(Spec OX,x, V ) ∼= 0, and just as in the previous paragraph we conclude that V ∼= 0.

The k-group Ji(X) is then affine because any filtered limit (in PAGSk) of affine groups is affine
(see [KS06, Prop. 6.1.9 & 6.1.10]).
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We now also see that Ji(X) is irreducible and thus connected for each i ≥ 1 by the same argu-
ment as the one used in the proof of Lemma 2.3.15.
It remains to show that for i ≥ 2 the groups Ji(X) are unipotent. Let i ≥ 2 and let G be an
algebraic k-group. We have

PAGSk(Ji(X)m, Gu) ∼= 0

PAGSk(Ji(X)u, Gm) ∼= 0

by Proposition 2.3.51, and

PAGSk(Ji(X), Gm) ∼=
⊕
x∈Xi

H i
{x}(Spec OX,x, Gm) ∼= 0,

where the last isomorphism is due to the fact that any algebraic k-group of multiplicative type
is the extension of a finite étale k-group by a group of the form Gm×· · ·×Gm; for every x ∈ Xi

we thus obtain the exact sequence

H i
{x}(Spec OX,x,Gm × · · ·Gm)︸ ︷︷ ︸

∼=0

→ H i
{x}(Spec OX,x, Gm)→ H i

{x}(Spec OX,x, π0(Gm))︸ ︷︷ ︸
∼=0

by Proposition 2.4.5, where the first term is isomorphic to 0 by Proposition 2.4.2 (and Corollary
2.3.3) and the second because (Gm)Spec OX,x

∼= O×X,x has a flasque resolution of length 1 (see
Example 3.2.33).
We then obtain the sequence of isomorphisms

PAGSk(Ji(X), G) ∼= PAGSk(Ji(X), Gm)⊕PAGSk(Ji(X), Gu)
∼= PAGSk(Ji(X), Gu)
∼= PAGSk(Ji(X)m, Gu)⊕PAGSk(Ji(X)u, Gu)
∼= PAGSk(Ji(X)u, Gu)
∼= PAGSk(Ji(X)u, Gu)⊕PAGSk(Ji(X)u, Gm)
∼= PAGSk(Ji(X)u, G)

whose composition is easily seen to be natural in G. The projection Ji(X) → Ji(X)u is then
seen to be an isomorphism because the canonical functor PAGSk ↪→ ÂGSk is fully faithful.

There remains one property of pro-algebraic resolutions which we have not been able to prove.
Grothendieck states that for any regular local ring (A,m) of dimension 1 we have (JA/k)m ∼= Gm.
Finally, we briefly discuss the question whether the objects of a pro-algebraic resolution are
projective and whether they calculate the derived functor of Schk(X, ) : AGSk → Ab. We
first note that by Proposition 1.4.6 the category PAGSk is the opposite of a Grothendieck
category, and thus has enough projective objects (see [KS06, Th. 9.6.2]); the derived functor of
Schk(X, ) therefore exists. By considering the short exact sequence 0→ µn → Gm

·n−→ Gm → 0

we may answer both questions raised above in the negative; in both situations the functor
Schk(X, ) ∼= PAGSk(J0(X), ) would take the above short exact sequence to a short exact
sequence; in the first case by assumption, and in the second case, because H1(X,µn) vanishes
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as (µn)X is flasque (see Proposition 2.4.2), but this is of course not true in general.
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