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Abstract

Many important theorems in differential topology relate properties of manifolds to properties

of their underlying homotopy types – defined e.g. using the total singular complex or the Čech

complex of a good open cover. Upon embedding the category of manifolds into the ∞-topos Diff∞

of differentiable sheaves one gains a further notion of underlying homotopy type: the shape of the

corresponding differentiable sheaf.

We develop a theory of nerves for locally contractible ∞-toposes as well as broadly applicable

recognition principles for when these calculate shapes. Using this theory we show that the notions of

underlying homotopy type of a differentiable sheaf alluded to above (as well as many others) indeed

agree with the shape.

Finally, working with the ∞-topos Diff0 of sheaves on topological manifolds, we give new and

conceptual proofs of some classical statements in algebraic topology. These include Dugger and

Isaksen’s hypercovering theorem, and Lurie’s vast generalisation of the Seifert – Van Kampen theorem.

This is the second of three articles on the ∞-topos of sheaves on the category of manifolds.
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Introduction

Many important results about smooth manifolds such as the classification of compact surfaces or the

Poincaré-Hopf theorem express differential topological properties in terms of suitably defined underlying

homotopy types of smooth manifolds. Similarly, important invariants of smooth manifolds such as their

de Rham cohomology only depend on their underlying homotopy type. If M is a smooth manifold, there

are many ways to define its underlying homotopy type, e.g., one may take

1. its smooth total singular complex;

2. its underlying topological space;

3. or to a hypercover · · ·
∐

Rd
∐

Rd M (e.g., the Čech complex of a good

open cover of M), one may associate the corresponding simplicial set obtaining by replacing every

copy of Rd by 1, · · ·
∐

1
∐

1.

Unfortunately, these constructions suffer from at least two defects: 1. They all rely on specific models

of homotopy types (i.e., simplicial sets or topological spaces). 2. None of these constructions are expressed

in terms of a universal property.

These defects may be remedied by thinking of underlying homotopy types in terms of covering spaces:

Let E be an ∞-topos and denote by π : E→ S the unique geometric morphism to S. Let X be an object

in E, then for any map A→ B of homotopy types and any map X → π∗B, the pullback square

E π∗A

X π∗B

⌟ (1)

produces a covering space over X (see [Hoy18, Prop. 3.4]). Given a further pair consisting of a homotopy

type B′ and a morphism X → π∗B′, as well as a map B′ → B making diagram

π∗B′

X

π∗B

commute, the covering space E → X may be obtained via the same construction from the morphism

A ×B B′ → B′. Thus, any covering space over X obtained from B as in (1) may be obtained from

B′ in the same way, and if there exists a universal morphism X → π∗C as above, then all covering

spaces over X constructed as in (1) may be obtained from homotopy types over C. While E(X,π∗( ))

is not in general representable, it is pro-representable, so that E← S : π∗ admits a formal left adjoint

π! : E → Pro(S); a colimit preserving functor which associates to any object X a pro-homotopy type
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called the shape of X. In many cases, large classes of covering spaces may be recovered from its shape

(see [Hoy18, Thms. 3.13 & 4.3] and Remark 1.21). For example, when E is the ∞-topos of sheaves on

the ∞-category of schemes w.r.t. the étale topology, then the shape coincides with the étale homotopy

type, and the category of 0-truncated covering spaces over any scheme, can be recovered from its étale

homotopy type (see [Hoy18, §5]).

For a simpler example, consider the ∞-topos [Aop, S] of presheaves on a small ∞-category A. In this

case, the shape functor forms a true left adjoint, i.e., it factors through S ↪→ Pro(S), and is given by

colim : [Aop, S]→ S. A salient property of this example is that the shape of any representable object is

contractible, and that [Aop, S] is generated under colimits by objects of contractible shape. Moreover, for

a second small ∞-category B together with a functor u : A→ B, we obtain a triple adjunction

[Aop, S] [Bop, S]
u∗

u!

u∗

⊣
⊣ (2)

where u! : [A
op, S] → [Bop, S] always preserves shapes, and [Aop, S] ← [Bop, S] : u∗ preserves shapes

precisely when u : A→ B is initial (a.k.a. cofinal, a.k.a. coinitial, a.k.a. . . . ). In general, for any ∞-topos

E the shape functor π! : E→ Pro(S) factors through S ↪→ Pro(S) iff E is generated under colimits by a

(small) set of objects with contractible shape (see Proposition 1.17). Such ∞-toposes are called locally

contractible , and share many of the pleasant properties of presheaf ∞-categories.

We now return to the constructions described in points 1. - 3. above. Denote by Diffr the ∞-topos

of r-times differentiable sheaves — S-valued sheaves w.r.t. the usual Grothendieck topology on the

category of Cartesian spaces Rd (d ≥ 0) and r-times differentiable maps between them. Observe that the

category of r-times differentiable manifolds forms a full subcategory of Diffr. In the preceding article,

[Clo24a], we equip Diffr with the structure of a fractured ∞-topos. Here we use this structure to give a

new proof that Diffr is locally contractible: the shape of Rd coincides with the shape of its underlying

topological space, which is seen to be contractible via a simple Galois theoretic proof (see Lemma 2.1).

We are able to make similar cofinality arguments for locally contractible ∞-toposes as for presheaf

∞-toposes (see §1.2.1). For example, (any number of variants of) the functor u : ∆→ Diffr sending [n]

to the standard simplex can be regarded as initial in an appropriate sense, and one obtains an adjunction

u! : [∆
op, S] Diffr : u∗⊥ (3)

in which both adjoints preserve shapes. Moreover, if r ≥ s, the forgetful functor Cartr → Carts induces

a triple adjunction

Diffr Diffs

u∗

u!

u∗

⊣
⊣ (4)

analogous to (2), where again u! and u∗ preserve shapes. If s = 0, then u! sends any manifold to its

underlying topological space.

Finally, taking a hypercover U• of M such that Un =
∐

Rd for all n ≥ 0, we observe that

π!M ≃ π! colim
[n]∈∆

(Un) ≃ colim
[n]∈∆

π!(Un) ≃ colim
[n]∈∆

π!

(∐
Rd

)
≃ colim

[n]∈∆

∐
π!

(
Rd

)
≃ colim

[n]∈∆

∐
π!1S (5)
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by descent and the fact that π! : Diffr → S preserves colimits, showing that the simplicial set associated

to U• indeed calculates the correct homotopy type. Applying (3) to point 1. above, (4) to 2., and (5) to

3., we obtain the following theorem (see §2.2):

Theorem A. The homotopy types described in points 1. - 3. above are all equivalent to the shape of

M .

Observe that Theorem A is obtained without the use of smooth approximations of continuous functions.

We now explain how Theorem A may be applied to the homotopy theory of topological spaces. We

set r = 0, so that Diff0 is the ∞-topos of sheaves on topological manifolds. Then, the topological

realisation - total singular complex adjunction

| | : ∆̂ TSpc : s⊥ (6)

factors as

∆̂ Diff0
≤0 TSpc,⊥ ⊥

where the first map is obtained from the cosimplicial diagram consisting of the standard topological

simplices, and the second adjunction is obtained from the inclusion v : Cart0 ↪→ TSpc. Thus, by

Theorem A the singular homotopy type of any topological space X is given by the shape of v∗X. This

observation allows us to give simple proofs of well-known theorems relating the descent and homotopy

theory for topological spaces:

1. Lurie’s Seifert – Van Kampen theorem (see [Lur17, Th. A.3.2], Theorem 2.29).

2. Dugger and Isaksen’s hypercovering theorem (see [DI04, Th. 1.1], Theorem 2.35).

3. the fact that for any principal G-bundle P → B, the topological space B is a homotopy quotient by

the action of G on P (see Theorem 2.42).

To our knowledge, all previous proofs that Diffr is locally contractible rely on modelling the shape

functor by v! : Diffr → TSpc, and then applying one of many variants of Dugger and Isaksen’s

hypercovering theorem, whose proofs are quite technical. Thus, in this article we turn this account on its

head, by first providing a proof that Diffr is locally contractible which eschews v! : Diffr → TSpc, and

then giving a proof of the hypercovering theorem which neatly relates singular shapes to descent. See

Remark 2.5 for details and references.

To illustrate our techniques used to prove 1.-3. we consider a topological space X covered by open

subsets U and V . A modern interpretation of the Seifert –Van Kampen theorem is that the square

X

U V

U ∩ V

(7)
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induces a pushout square in S. To prove this, all we need to do is to observe that (7) is carried to a

pushout square in Diff0, and then the theorem follows from the fact that the shape functor π! : Diff0 → S

preserves colimits.

Organisation

This article is a sequel to [Clo24a] in which we endow Diffr with the structure of a fractured ∞-topos

and discuss some consequences. Like [Clo24a], the present article has two parts, §1 & §2, where the first

part refines some existing theory, in this case the theory of locally contractible ∞-toposes, and applies it

to the ∞-topos Diffr.

1 Shapes and cofinality: As explained in the introduction, the shape of an object in an ∞-topos

gives a Galoisic notion of its underlying pro-homotopy type. In §1.1 we first review shapes of ∞-toposes

(rather than their objects); only afterwards, while discussing the functoriality of shapes, will we arrive at

the notion of shapes of objects in an ∞-topos, and reconcile the two notions by noting that the shape

of the final object of an ∞-topos is the same as the shape of the ∞-topos itself. Moreover, we give a

cohomological criterion for when the shape of an ∞-topos is contractible. In §1.2 we specialise to locally

contractible ∞-toposes — those ∞-toposes which are generated under colimits by a set of objects of

contractible shape (so that the shape of any object is a homotopy type) — and in §1.2.1 we provide new

recognition principles for when nerve diagrams (such as ∆→ Diffr, giving rise to (3)) may be used to

calculate these homotopy types. Finally, in §1.3 we show that the shape of the petit ∞-topos of any

object in a fractured ∞-topos is equivalent to the shape of its gros ∞-topos, giving rise to a technique for

exhibiting a fractured ∞-topos as locally contractible.

2 Shapes of differentiable sheaves: In §2.1 we use the techniques from §1.3 and [Clo24a, §2] to

show that Diffr is locally contractible: Diffr is generated by the Cartesian spaces Rd, whose shape

may be calculated using its associated petit ∞-topos (which is just the ∞-topos of sheaves on its under-

lying topological space or Rd), and may be shown to be contractible by combining the cohomological

criterion from §1.1 with the fact that covering spaces on Rd are trivial. In §2.2 we use the techniques

of §1.2 to prove Theorem A. Then in §2.3 we give two more applications of the technology developed

so far: in §2.3.1 we show how Carchedi’s calculation of the shape of the Haefliger stack seems almost

inevitable using the calculus of shapes on Diffr developed here, and in §2.3.2 we give elementary new

proofs of several Seifert – Van Kampen like theorems, such as Dugger and Isaksen’s hypercovering theorem.

In the final article in this series, [Clo24b], we further develop homotopical calculi on locally contractible

∞-toposes, and construct such calculi on Diffr in order to study shapes of mapping sheaves.

Relation to other work

The main player in this article is arguably the shape functor π! : Diffr → S. A sketch of the existence of

this functor was first provided by Dugger in [Dug01, Prop. 8.3], and a complete construction was first

given in [Sch13, Prop. 4.4.6]. Other constructions are given in [Car16, §3], [BEBP19, Prop. 1.3], [Bun22],
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[ADH21, §4.3], [Pav22]. On a conceptual level we drew inspiration from [Shu18] which discusses the

relationship between Diffr and S in a type theoretic setting.

The theory we develop in §2 is heavily influenced by [Cis03] which in turn draws heavily on Pursuing

Stacks ([Gro83]) and the further development of Grothendieck’s ideas in [Mal05].

Moreover, we give new and simpler proofs of classical results relating the homotopy theory of topological

spaces with descent such as [DI04, Th. 1.3] and [Lur17, Th. A.3.2] as well as some classical facts about

(unstable) Borel equivariant homotopy theory.

1 Shapes and cofinality

As explained in the introduction, the shape of any object in an ∞-topos provides a Galois theoretic

notion of its underlying pro-homotopy type. In §1.1 we give a definition of the shape of an ∞-topos, and

give a cohomological criterion for when a geometric morphism induces an equivalence of shapes. Then,

we discuss local shape equivalences — geometric morphisms satisfying an analogous property to initial

functors. In §1.2 we specialise to locally contractible ∞-toposes — those ∞-toposes for which the shape

of every object is a homotopy type. We then show how certain nerve diagrams in locally contractible

∞-toposes satisfying a cofinality condition may be used to calculate shapes. Finally, in §1.3 we discuss

how the structure of a fractured ∞-topos interacts with the property of being locally contractible.

Throughout this section E,F,X,Y denote ∞-toposes.

1.1 Basic definitions and properties

We begin by giving a definition of the shape of an ∞-topos, before moving on to a discussion of the

functoriality of the shape construction.

Denote by π : X → S the unique geometric morphism with target S. By [DAG XIII, Prop. 3.1.6]

and [Lur09, Prop. 5.4.7.7] the copresheaf (πX)∗ ◦ π∗
X may be identified with an object in Pro(S), called

the shape of X, and is denoted by Π∞(X). The ∞-topos is said to have trivial shape if Π∞(X) = 1.

Observe that X has trivial shape iff X← S : π∗ is fully faithful.

Any geometric morphism f : X→ Y gives to a morphism of shapes Π∞(X)→ Π∞(Y) by composing

(πX)∗ ◦ π∗
X = X(1X, π

∗
X( )) = X(f∗1Y, π

∗
Y ◦ f∗( ))← Y(1Y, π

∗
Y( )) = (πY)∗ ◦ π∗

Y. (8)

It turns out to be surprisingly difficult to coherently extend Π∞ to a functor Top→ Pro(S). As Top

admits all filtered limits (see [Lur09, Th. 6.3.3.1]), the functor Top← S, S/A ← [ A extends to a functor

Top← Pro(S). In the upcoming [Mar] the shape Π∞ will be exhibited as the left adjoint of Top← Pro(S),

thus not only showing that Π∞ can be made functorial, but also exhibiting a universal property of Π∞,

and moreover providing a version of the Seifert – Van Kampen theorem, as Π∞ preserves colimits.

Fortunately, we will only require “local functoriality” of Π∞: The functor E← S : π∗ extends to a functor

E← Pro(S). Tracing through the proof of [Cis19, Prop. 6.3.9] and again applying [DAG XIII, Prop. 3.1.6]

and [Lur09, Prop. 5.4.7.7] one sees that this functor admits a left adjoint given by X 7→ E(X,π∗( )),

which we denote by (πE)! : E→ Pro(S) (or π!, when E is clear from context). The two shape functors are

compatible in that we recover (πE)! from Π∞ as the composition of E
E 7→E/E−−−−−→ Top

Π∞−−→ Pro(S). Thus,
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(πE)! can also be viewed as satisfying a version of the Seifert – Van Kampen theorem, either by observing

that it is a left adjoint or by considering its composition with Π∞.

The shape of an ∞-topos is a powerful invariant, motivating the following definition:

Definition 1.1. A geometric morphism f : X → Y is called a shape equivalence if Π∞f is an

isomorphism. ⌟

Example 1.2. A functor A→ B between small ∞-categories induces an equivalence between homotopy

types A≃
≃−→ B≃ iff the induced geometric morphism [Aop, S] [Bop, S]⊥ is a shape equivalence. ⌟

We have the following cohomological Whitehead theorem for hypercomplete ∞-toposes:

Proposition 1.3. If X,Y are hypercomplete, then a geometric morphism f : X→ Y is a shape equivalence

iff the induced morphism

Hi(X;E)← Hi(Y;E)

is an isomorphism for all i ≥ 0 and all E, where E is a set for i = 0, a group for i = 1, and an Abelian

group for i ≥ 2.

Proof. The only-if-statement is obvious. For the if-statement we want to prove that for any homotopy

type K the induced map X
(
1X, (πX)

∗(K)
)
← Y

(
1Y, (πY)

∗(K)
)

is an equivalence. First, we observe that

it is enough to show this for the special case when K is n-truncated for some n ∈ N, because for general

K we then have

X
(
1X, (πX)

∗(K)
)
= X

(
1X, lim

i
(πX)

∗(K)≤i

)
= X

(
1X, lim

i
(πX)

∗(K≤i)
)

= lim
i

X
(
1X, (πX)

∗(K≤i)
)

= lim
i

Y
(
1Y, (πY)

∗(K≤i)
)

= Y
(
1Y, lim

i
(πY)

∗(K≤i)
)

= Y
(
1Y, lim

i
(πY)

∗(K)≤i

)
= Y

(
1Y, (πY)

∗(K)
)
,

where the first and last isomorphisms follow from the hypercompleteness assumption, and the second and

penultimate isomorphisms follow from [Lur09, 5.5.6.28].

We prove the statement for i-truncated K via induction on i: The base case i = 0 holds by assumption.

Let i > 0, and assume the statement holds for all k-truncated objects, for 0 ≤ k < i. Let K be an

i-truncated homotopy type, then we obtain the commutative square

X
(
1X, (πX)

∗(K)
)

Y
(
1Y, (πY)

∗(K)
)

X
(
1X, (πX)

∗(K≤i−1)
)

Y
(
1Y, (πY)

∗(K≤i−1)
)

in which the bottom arrow is an isomorphism by the induction hypothesis. To show that the top horizontal

morphism is an equivalence it is thus enough to show that for every fibre L of K → K≤i−1 the map
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X
(
1X, (πX)

∗(L)
)
← Y

(
1Y, (πY)

∗(L)
)

is an equivalence, as 1 = X
(
1X, (πX)

∗(1)
) =←− Y

(
1Y, (πY)

∗(1)
)
= 1,

and both X
(
1X, (πX)

∗( )
)

and Y
(
1Y, (πY)

∗( )
)

preserve finite limits. We check the equivalence on

connected components and on loop spaces. For every point in L we have

ΩX
(
1X, (πX)

∗(L)
)
= X

(
1X, (πX)

∗(ΩL)
)

= Y
(
1Y, (πY)

∗(ΩL)
)

= ΩY
(
1Y, (πX)

∗(L)
)
,

where the second isomorphism follows from the induction hypothesis. On connected components we have

π0 X
(
1X, (πX)

∗(L)
)
= Hi(X, L)

= Hi(Y, L)

= π0 Y
(
1Y, (πY)

∗(L)
)

where the second isomorphism follows by assumption.

Corollary 1.4. Let X be a hypercomplete ∞-topos, then the shape of X is contractible iff the canonical

map

E → H0(X, E)

is an equivalence for all sets E, and

Hi(X, G) = 0

for all i and all G, where G is a group for i = 1, and an Abelian group for all i ≥ 2.

We now discuss how geometric morphisms satisfying extra conditions interact with shapes:

Definition 1.5. A geometric morphism u : E→ F is called essential if u∗ admits an extra left adjoint,

which we denote by u!. ⌟

Example 1.6. Any étale geometric morphism is essential. ⌟

Proposition 1.7. Let u : E→ F be an essential geometric morphism, then u! preserves shapes.

Proof. The functors (πF)! ◦ u! and (πE)! are both left adjoint to the extension of the functor π∗
E to

Pro(S)→ E.

Example 1.8. Let u : A → B be a functor between small ∞-categories, then u! : [A
op, S] → [Bop, S]

preserves shapes. ⌟

We now turn to a notion of cofinality in the toposic context. Let f : E→ F be a geometric morphism,

then by [Cis19, 6.4.2] the functor (8) may be extended to a base change map

E F

Pro(S)

f∗

(πE)! (πF)!
(9)
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given by

(πE)!f
∗Y = E(f∗Y,

(
πE)

∗( )
)
= E(f∗Y, f∗ ◦

(
πF)

∗( )
)
← F(Y,

(
πF)

∗( )
)
= (πF)!Y

or equivalently by

Π∞(f/Y ) : Π∞(E/f∗Y )→ Π∞(F/Y ).

Definition 1.9. The geometric morphism f : E→ F is a local shape equivalence iff the base change

map (πE)! ◦ f∗ ⇒ (πF)! in (9) is an equivalence. ⌟

Example 1.10. A functor A → B between small ∞-categories is initial iff the induced geometric

morphism [Aop, S] [Bop, S]⊥ is a local shape equivalence. ⌟

We conclude this subsection with some useful properties of local shape equivalences:

Proposition 1.11. Let f : E→ F be a geometric morphism. Assume that F is generated under small

colimits by a subcategory C, and that the base change map (πE)!(f
∗F )← (πF)!F is an isomorphism for

every object F in C, then f is a local shape equivalence.

Proposition 1.12. Let a : E ↪→ F be a geometric embedding which is also a local shape equivalence, then

(πE)! = (πF)! ◦ a∗.

Proof. By assumption (πE)! ◦ a∗ = (πF)!, so the corollary follows from precomposing with a∗.

Proposition 1.13. Any geometric morphism f : E → F such that f∗ is fully faithful is a local shape

equivalence.

Proof. For every Y in F we have E (f∗Y, π∗
E( )) = E (f∗Y, f∗π∗

F( )) = F (Y, π∗
F( )).

Corollary 1.14. If E has trivial shape, then πE : E→ S is a local shape equivalence.

Recall that E is local if the global sections functor π∗ : F → S admits a right adjoint, which we denote

by π!.

Proposition 1.15. Any local ∞-topos has trivial shape.

Proof. The adjunction π! ⊢ π∗ is a geometric morphism, so that π!π∗ is the direct image component

of a geometric morphism S→ S and thus equivalent to the identity. By [JM89, Lm. 1.3] the counit of

the induced adjunction Ho(π∗) : Ho(X) Ho(S) : Ho(π!)⊥ is an isomorphism, therefore the counit of

π! ⊢ π∗ is an isomorphism, and therefore, finally, the unit of π∗ ⊢ π∗ is an isomorphism.

1.2 Locally contractible toposes

We now specialise to a class of ∞-toposes, for which the theory of shapes is particularly nice.

Definition 1.16. An object in E is called contractible if its shape is trivial. ⌟

Proposition 1.17 ([MW23, Prop. 5.2.3]). The following are equivalent:

(I) The shape functor π! : E→ Pro(S) factors through S.
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(II) The ∞-topos E is generated under colimits by its subcategory of contractible objects.

Proof. The implication (II) =⇒ (I) follows from the fact that the inclusion S ↪→ Pro(S) commutes with

colimits. To show (I) =⇒ (II), let E be an object of E, then π!E is the colimit of the constant diagram

1 indexed by π!E. Thus, π∗π!E is the colimit of the constant diagram 1 indexed by π!E in E, so that

E is the colimit of the diagram E ×π∗π!E 1 indexed by π!E, and E ×π∗π!E 1 has contractible shape by

[Lur17, Prop. A.1.9].

Definition 1.18. An ∞-topos is called locally contractible if it satisfies the equivalent conditions of

Proposition 1.17. ⌟

Remark 1.19. Locally contractible ∞-toposes are called locally of constant shape in [Lur17], and locally

∞-connected in [Hoy18]. ⌟

Proposition 1.20 ([Lur17, Prop. A.1.11]). Assume that E is locally contractible, then the functor

(π!)/1E
: E/1E

= E→ S/π!1E
admits a fully faithful right adjoint.

Remark 1.21. In Proposition 1.20 the image of the left adjoint of (π!)/1E
: E/1E

= E→ S/π!1E
is given by

the subcategory of E spanned by the covering spaces of 1E.

By [Cis19, Prop. 7.11.2] we obtain the following corollary (with notation as in Proposition 1.20):

Corollary 1.22. The functor (π!)/1E
: E/1E

= E→ S/π!1E
exhibits S/π!1E

as the localisation of E along

its shape equivalences.

Example 1.23. Let A be a small ∞-category, then the constant presheaf functor [Aop, S]← S admits

both a left and a right adjoint given by the colimit and limit functors respectively, so that [Aop, S] is a

locally contractible ∞-topos. We have colim1 = A≃, and the image of the fully faithful right adjoint to

the functor colim/1 : [Aop, S]→ S/A≃ is spanned by those presheaves on A carrying all morphisms in A

to isomorphisms. ⌟

Informally, this right adjoint functor is given by sending any map X → π!1 in S to the map

1 ×π∗π!1 π∗X → 1. For locally contractible ∞-toposes, this makes precise the idea explained in the

introduction that π!1 is characterised by universally controlling the theory of covering spaces on 1. For

similar statements for non-locally contractible ∞-toposes, see [Hoy18].

Before moving on to nerves, we briefly discuss equivariant homotopy theory in locally contractible

∞-toposes. Assume that E is locally contractible, then for any group object G in E the ∞-category EG

is an ∞-topos as it is equivalent to E/BG. If moreover the shape functor (πE)! : E→ S preserves finite

products, then we see from the left square of

EG E/BG E

Sπ!G S/Bπ!G S

≃

≃

that ((πEG
)!)/1EG

is given by the functor EG → Sπ!G taking any object X to (πE)!X with its induced

(πE)!G-action. By composing the two horizontal morphisms on the top we see that the quotient functor

10



/G : EG → E is the extra left adjoint of an étale geometric morphism, so that Proposition 1.7 yields the

following result:

Proposition 1.24. For any object X in EG the comparison morphism π!X/π!G → π!(X/G) is an

isomorphism in S.

1.2.1 Nerves

We now discuss the main tool for calculating shapes in this article. Until the end of §1.2.1, E denotes a

locally contractible ∞-topos, and A, a small ∞-category together with a functor u : A→ E.

Proposition 1.25. If the image of u : A → E is spanned by contractible objects then the functors

colim : [Aop, S]→ S and (πE)! ◦ u! are canonically equivalent.

Proof. By assumption the composition of A u−→ E
π!−→ S is equivalent to the constant functor a 7→ 1, so

the equivalence is obtained by extending by colimits.

In the following two statements C ⊆ E denotes a small subcategory spanned by contractible objects

and generating E under colimits.

Proposition 1.26. The shape functor (πE)! is canonically equivalent to colimc∈C E(c, ).

Proof. We observe that (π[Cop,S])!c = colimC( , c) = 1 for every object c in C, and apply first Proposition

1.11 and then Proposition 1.12 to the geometric morphism E→ [Cop, S].

Theorem 1.27. Assume that u : A → E factors (uniquely) through C ↪→ E, and that the functor

u : A→ C is initial, then the natural transformation

colim◦u∗ → (πE)!

is an equivalence.

Moreover, both u! and u∗ preserve shape equivalences, and induce an adjoint equivalence as indicated

in the following diagram:

[Aop, S] E

S/A≃ S/π!1

u!

u∗

≃

≃

⊣
⊣

Proof. The two diagrams

[Aop, S] E [Aop, S] E

S S

u!

colim
π!

u∗

π!colim

commute, the first one by Proposition 1.25, and the second one by the following calculation (obtained using

Proposition 1.26): (πE)!X = colimc∈C E(c,X) = colima∈A E(ua,X). Thus, both u! and u∗ preserve weak

equivalences, inducing the indicated adjoint equivalence by Corollary 1.22 and [Cis19, Prop. 7.1.14].

11



We will often refer to any functor u : A→ E to which we intend to apply Theorem 1.27 as a nerve

diagram , and the functor [Aop, S]← E : u∗ as a nerve . In the examples considered in this article, the

functor α : A→ C usually induces a bijection on objects.

Remark 1.28. Let u, v : A → E be two nerve diagrams satisfying the conditions of Theorem 1.27 (the

small subcategories C are not assumed to be the same for u and v). Any natural transformation u→ v

induces a natural transformation u∗ ← v∗, and by the universal property of localisations we obtain a

diagram

[Aop, S] E

S/A≃ S/π!1.

u∗

v∗ (10)

As the two functors S/A≃ ← S/π!1 are equivalences they restrict to equivalences A≃ ← π!1. (This follows

e.g. from [AF20, Th. 2.39], or the fact that S/ : S→ Top is fully faithful.) The functor from morphisms

A≃ ← π!1 to colimit preserving functors [Aop
≃ , S]← [(π!1)

op, S] is fully faithful, and thus the lower natural

transformation in (10) must be a natural isomorphism. ⌟

We will repeatedly use Propositions 1.32 & 1.33 below to verify the conditions of the above proposition.

Definition 1.29 ([Mal05, §1.4]). Let A be an ordinary category admitting a final object 1, then an

object I in A with two morphisms 1 ⇒ I is called an interval in A. If A admits an initial object ∅, and

the square
∅ 1

1 I

is a pullback, then I is separating interval . ⌟

Example 1.30. Let E be an ordinary topos, then the subobject classifier Ω in E canonically has the

structure of a separating interval. The first morphism 1→ Ω is given by the universal monomorphism,

and the second morphism 1→ Ω classifies the subobject ∅→ 1. ⌟

Definition 1.31. Let A be an ordinary category equipped with an interval I, then an I-homotopy

between two maps f, g : a ⇒ a′ is a commutative diagram

1× a

I × a a′

1× a

f

g

and f and g are called I-homotopic if there exists an I-homotopy between f and g. A map f : a→ a′

is an I-homotopy equivalence if there exists a map a← a′ : g, such that gf and fg are I-homotopic

to ida and ida′ , respectively. An object a in A is I-contractible, if the unique morphism a→ 1 is an

I-homotopy equivalence. ⌟

12



Proposition 1.32. Let (A, I) and (B, J) be pairs consisting of small ordinary categories together with

an interval, and let u : A→ B be a functor carrying I to J (including the inclusions of the final object,

which u must then preserve). Assume that

(a) π! : [A
op, S]→ S preserves finite products, and that

(b) every object in B is J-contractible

then u is initial.

Proof. The functor u is initial iff for every object b in B the shape of u∗b is contractible (see [Cis19,

Cor. 4.4.31]). Let J × b→ b be an J-contraction of b, then the unit morphisms produce a diagram

u∗b ∼= 1A × u∗b (u∗u!1A × u∗b) ∼= u∗(1A × b)

I × u∗b (u∗u!I × u∗b) ∼= u∗(J × b) u∗b,

u∗b ∼= 1A × u∗b (u∗u!1A × u∗b) ∼= u∗(1A × b)

id

0

showing that u∗b is I-contractible in [Aop, S].

See [Clo24b, App. A] or [Cis06, §8.4] for some background on the cube category.

Proposition 1.33. Let (B, J) be a pair consisting of a small ordinary category together with an interval.

Let u : → B be a functor carrying the interval 1 to J (including the inclusions of the final object,

which u must then preserve). If every object in B is J-contractible then u is initial.

Proof. As in the previous proposition, the functor u is initial iff for every object b in B the shape of u∗b

is contractible. We will require the following claim, which we prove below.

Claim: There exists a natural morphism of cubical sets X1 ⊗X2 → X1 ×X2.

Let J × b→ b be an J-contraction of b, then the unit morphisms produce a diagram

u∗b ∼= 1 ⊗ u∗b 1 × u∗b (u∗u!1 × u∗b) ∼= u∗(1 × b)

1 ⊗ u∗b 1 × u∗b (u∗u!
1 × u∗b) ∼= u∗(J × b) u∗b,

u∗b ∼= 1 ⊗ u∗b 1 × u∗b (u∗u!1 × u∗b) ∼= u∗(1 × b)

id

0

showing that u∗b is 1-contractible because π!(X1 ⊗X2) ≃ π!X1 × π!X2 for all cubical sets X1, X2 (see

[Cis06, Cor. 8.4.32]).

Proof of claim: For any two cubical sets X1, X2 there are canonical morphisms X1⊗X2 → Xi (i = 1, 2). To

see this, note that for any k1, k2 ∈ N we have projection maps (in Set) k1 ⊗ k2 ∼= {0, 1}k1 ×{0, 1}k2 →
{0, 1}ki for i = 1, 2; the canonical morphisms X1 ⊗X2 → Xi (i = 1, 2) are then obtained by extending by

colimits, yielding the desired morphism.
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Proposition 1.34. With notation as in Proposition 1.33, if B admits products, u : → B is monoidal,

and every object in B is a finite product of J , then u is initial if J is J-contractible.

Proof. It is enough to show that if the objects b and b′ are J contractible, then so is b × b′. So let

J × b→ b and J × b′ → b′ be contractions, then the composition of J × b× b′ → J × J × b× b′ → b× b′

is a contraction of b× b′, where the first morphism is induced by the diagonal morphism J → J × J .

1.3 Fractured ∞-toposes and shapes

We now prove the result that will allow us to exhibit Diffr as a locally contractible topos. This result

may be viewed as a vast generalisation of the techniques underlying [Cis03, Lm. 6.1.5]. Throughout this

subsection j! : E
corp E : j∗⊥ denotes a fractured ∞-topos (see [Lur18, Ch. 20] and [Clo24a, §1]).

Theorem 1.35. For any corporeal object X the geometric morphism j! : E
corp
/X E/X : j∗⊥ is a local

geometric morphism.

Proof. This is a consequence of property [Clo24a, (b)] of in the definition of fractured ∞-toposes, and

Proposition 1.13.

The following result could be viewed as a corollary of the above, but we note that it follows more

immediately from Proposition 1.7.

Theorem 1.36. The functor j! : E
corp → E preserves shapes.

Thus, the cohomology of a geometric object such as a scheme with coefficients in a locally constant

sheaf is the same when computed in its gros or petit topos. For us, Theorem 1.35 provides a way of

showing that a topos is locally contractible, as seen in the following corollary.

Corollary 1.37. Let C ⊆ Ecorp be a small subcategory, spanned by contractible objects, and generating

Ecorp under colimits, then j!C ⊆ E is a small subcategory, spanned by contractible objects, generating E

under colimits.

In other words, if Ecorp is locally contractible, then so is E.

Remark 1.38. By [Lur18, Rmk. 20.3.2.6] the subcategory of E/X spanned by admissible morphisms is

an ∞-topos for any object X in E, and it can be shown that the inclusion of this subcategory into E/X

induces an equivalence on shapes. ⌟

2 Shapes of differentiable sheaves

Fix an element r of N ∪ {∞} for the remainder of this article. Recall from [Clo24a, §2] that

1. Mfdr denotes the category of r-times differentiable (2nd-countable, Hausdorff) manifolds and

r-times differentiable maps, and

2. Mfdr
ét denotes the category of r-differentiable manifolds and r-differentiable open embeddings.

3. Cartr denotes the full subcategory of Mfdr spanned by the spaces Rn (0 ≤ n <∞).
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4. Cartrét denotes the full subcategory of Mfdr
ét spanned by the spaces Rn (0 ≤ n <∞).

Each of these small categories is equipped with the Grothendieck topology in which a sieve on a manifold

is a covering sieve iff it contains a covering consisting of jointly surjective open embeddings. An S-valued

sheaf on Cartr (or equivalently Mfdr) is an r-times differentiable sheaf , and the ∞-topos thereof is

denoted by Diffr. Similarly, an S-valued sheaf on Cartrét (or equivalently Mfdr
ét) is an étale r-times

differentiable stack , and the ∞-topos thereof is denoted by Diffr
ét. Moreover, the left Kan extension

j! : Diffr
ét → Diffr of the canonical functor j : Cartrét → Cartr ↪→ Diffr equips Diffr with the structure

of a fractured ∞-topos (see [Clo24a, §2.1]). For any r-times differentiable étale stack X its image under j!
is usually likewise denoted by X.

We first prove in §2.1 that Diffr is a locally contractible ∞-topos compatibly with its fractured

∞-topos structure, so that we may apply the technology of §1 to Diffr. In §2.2 we prove Theorem A from

the introduction stating that various ways of extracting homotopy types from manifolds are equivalent.

Finally, in §2.3 we discuss some applications of the technology developed so far; we give a streamlined

account of Carchedi’s calculation of the shape of the Haefliger stack in §2.3.1, and provide new, simpler

proofs of classical descent theorems in algebraic topology such as Dugger and Isaksen’s hypercovering

theorem in §2.3.2.

2.1 Diff r is a locally contractible ∞-topos

Lemma 2.1. The shape of Rd is contractible in Diffr
ét for every d ∈ N.

Proof. The ∞-topos (Diffr
ét)/Rd is equivalent to the ∞-topos of sheaves on the underlying topological

space of Rd. We will check that (Diffr
ét)/Rd is contractible (and moreover locally contractible) by

induction on d.

The case d = 0 is clear.

Next, we check the case d = 1 using Corollary 1.4. Let X be a set, then H0(R, X) = TSpc(R, X) = X,

as R is connected. Let G be any group, then H1(R, G) is equivalent to the set of isomorphism classes

of principle G-bundles on R, which are constant (and thus all equivalent) by the standard argument

that covering spaces on R are constant (see e.g., [Sch14, Lm. 5.1.3]). Finally, by [APG90, §II.6.2] R

has covering dimension ≤ 1, and thus cohomological dimension ≤ 1 by the discussion following [Lur09,

Rmk. 7.2.2.19]. (Alternatively, one may prove that R has cohomological dimension ≤ 1 using a similar

argument to the one used to exhibit the triviality of covering spaces on R, as shown in [Sch14, Lm. 5.1.1].)

Observe that (Diffr
ét)/R is moreover locally contractible, as R has a basis given by open intervals, which

are each diffeomorphic to R. Now, let d > 1, and assume that (Diffr
ét)/Rd−1 has contractible shape and

moreover is locally contractible, so that by Proposition 1.20 the adjunction π! : (Diffr
ét)/Rd−1 S : π∗⊥

is a reflection. Now, observe that the triple adjunctions

(Diffr
ét)/R S

π∗

π!

π∗ (Diffr
ét)/Rd−1 S

π∗

π!

π∗

are reflective adjunctions in the (∞, 2)-category of presentable ∞-categories and left adjoints, so that

(Diffr
ét)/Rd ← S : π∗ is a reflective subcategory, as it is obtained from the tensor product of the above.

Corollary 2.2. The ∞-topos Diffr
ét is locally contractible.
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By Theorem 1.35 we then obtain the following corollary:

Corollary 2.3. The shape of Rd is contractible in Diffr for all d ∈ N.

Corollary 2.4. The ∞-topos Diffr is locally contractible.

Remark 2.5. The functor π! : Diffr → S has been shown to exist many times before, e.g. in [Dug01,

Prop. 8.3], [Sch13, §4.4], [Car16, Prop. 3.1], [BEBP19, Prop. 1.3], [Bun22], [ADH21, §4.3], [Pav22]. All

of these sources rely on some variant of the nerve or Seifert – Van Kampen theorem (see [Bor48], [Ler50],

[Wei52], [Seg68, §4], [DI04, Th. 1.1], [Lur17, Th. A.3.1]) to implement some version of the following

argument: one shows that

1. colim : [(Cartr)op, S]→ S sends covers to colimits, and

2. constant presheaves on Cartr are sheaves,

so that the adjunction colim : [(Cartr)op, S] S : const⊥ restricts to π! : Diffr S : π∗⊥ . We will

discuss the specific manifestation of this argument used in [Car16] in §2.3.1.

The proofs of many variants of the nerve and Seifert –Van Kampen theorem, in particular [DI04,

Th. 1.1] and [Lur17, Th. A.3.1], are quite involved. We will obtain these practically for free in §2.3.2. ⌟

Corollary 2.6. The shape functor π! : Diffr → S preserves finite products.

Proof. By Proposition 1.12 the shape of any sheaf in Diffr may be computed as the colimit of the

corresponding presheaf on Cartr, but Cartr has finite products, and is thus sifted.

Several of the references listed in Remark 2.5 moreover show (some variant of) the following result:

Proposition 2.7. The shape functor π! : Diffr → S exhibits S as the localisation of Diffr along the

projection map R1 ×X → X for all differentiable sheaves X.

Proof. Denote by W the class of maps inverted by the localisation of Diffr along the projection map

R1 × X → X for all differentiable sheaves X. By Corollary 2.6 these projection maps are all shape

equivalences, so W is contained in the class of shape equivalence. On the other hand, the map Rd → 1

can be decomposed into a sequence of projection maps Rd → Rd−1 → · · · → R→ 1, and are thus in W ,

and therefore by the 2-out-of-3 property, all maps in Cartr are in W . Any R-local sheaf may be viewed

as an R-local presheaf on Cartr, and is thus in the image of (πCartr )
∗ by Example 1.23, and is thus in

the image of (πDiffr )∗ = a∗ ◦ (πCartr )
∗, where a∗ is the sheafification functor.

2.2 Comparing methods of calculating underlying homotopy types of differ-

entiable sheaves

We first construct various nerve diagrams in Diffr in §2.2.1, and show that the induced nerves all calculate

shapes. Then, in §2.2.2 we show that sending any r-times differentiable manifold to its underlying s-times

differentiable manifold for r ≥ s ≥ 0 does not change its shape.
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2.2.1 Nerves

Here we consider five different nerve diagrams:

A• : ∆→ Diffr
≤0

∆•
sub : ∆→ Diffr

≤0

∆• : ∆→ Diffr
≤0

• : → Diffr
≤0

• : → Diffr
≤0

In each case we will use Theorem 1.27 to show that the five resulting nerves all calculate shapes.

Extended simplices

Definition 2.8. Consider the cosimplicial object

A• : ∆ → Diffr
≤0

[n] 7→ An :=
{

(x0, . . . , xn) ∈ Rn+1 x0 + · · ·+ xn = 1
}
,

then the spaces An for n ≥ 0 are referred to as extended simplices. Moreover we write

∂An := A•
! ∂∆

n, n ≥ 0

Λn
k := A•

! Λ
n
k , n ≥ 1, n ≥ k ≥ 0.

⌟

Proposition 2.9. The canonical natural transformation colim ◦ (A•)∗ → (πDiffr )! is an equivalence.

Proof. The image of A• is given by Cartr, and the induced functor ∆→ Cartr is easily seen to satisfy

the conditions of Proposition 1.32, thus verifying the conditions of Theorem 1.27.

Closed simplices Consider the cosimplicial object

∆•
sub : ∆ → Diffr

≤0

[n] 7→ ∆n
sub.

where ∆n
sub denotes the standard n-simplex with the subspace diffeology furnished by its standard

embedding in Rn+1.

Proposition 2.10. The canonical natural transformation colim ◦ (∆•
sub)

∗ → (πDiffr )! is an equivalence.

Proof. To see that the image C of ∆•
sub satisfies the conditions of Theorem 1.27 we observe that the

collection of translations of the standard inclusion ∆d
sub ↪→ Ad form a cover of Ad (d ≥ 0), so that we may

apply [Lur18, Prop. 20.4.5.1]. The induced functor ∆→ C is then easily seen to satisfy the conditions of

Proposition 1.32, thus verifying the conditions of Theorem 1.27.
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Kihara’s simplices It has been a longstanding goal to establish a model structure on diffeological

spaces (see e.g. [CW14] and [HS18]). To this end Kihara endows the standard simplices with a new

diffeology in [Kih19, § 1.2]. With this diffeology the horn inclusions admit deformation retracts (see

Proposition 2.11), allowing Kihara to mimic the construction of the model structure on topological spaces

in [Qui67, §II.3], and show that the resulting model category is Quillen equivalent to simplicial sets with

the Kan-Quillen model structure. We need Kihara’s simplices in order to construct objects satisfying the

differentiable Oka principle which is the subject of [Clo24b, §2].

For the convenience of the reader, we repeat the construction of Kihara’s simplices: For each n ≥ 1

and each 0 ≤ k ≤ n we define the set

An
k :=

{
(x0, . . . , xn) ∈ ∆n xk < 1

}
.

We now proceed inductively: On ∆0 and ∆1 the diffeology is the subspace diffeology coming from R1 and

R2, respectively. Let n > 1, and assume that the diffeologies on the simplices ∆m for m < n have been

defined, then we define a diffeology on An
k by exhibiting this set as the underlying set of the quotient

∆n−1 × {0} ∆n−1 × [0, 1)

1 An
k ,

where ∆n−1 × [0, 1)→ An
n is given by (x0, . . . , xn−1; t) 7→ ((1− t) · x0, . . . , (1− t) · xn, t), and similarly for

k ̸= n. Finally, the diffeology on ∆n is determined by the map
∐n

k=0 A
n
k ↠ ∆n.

Proposition 2.11 ([Kih19, § 8]). The horn inclusions Λn
k ↪→ ∆n for n = 2 and n ≥ k ≥ 0 admit a

deformation retract.

Definition 2.12. We write
∆• : ∆ → Diffr

[n] 7→ ∆n

for the cosimplicial object sending each simplex ∆n to the standard n-simplex endowed with the diffeology

described above. The spaces ∆n for n ≥ 0 are referred to as Kihara’s simplices. Moreover, we write

∂∆n := ∆•
! ∂∆

n, n ≥ 0

Λn
k := ∆•

! Λ
n
k , n ≥ 1, n ≥ k ≥ 0

⌟

The proof of the following proposition is completely analogous to the proof of Proposition 2.10.

Proposition 2.13. The canonical natural transformation colim ◦ (∆•)∗ → (πDiffr )! is an equivalence.

Extended cubes See [Clo24b, App. A] or [Cis06, §8.4] for some background on the cube category.

Definition 2.14. We write
• : → Diffr

n 7→ Rn
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for the unique symmetric monoidal functor determined by sending the morphisms δξ : 0 → 1 to 0 7→ ξ

for ξ = 0, 1 (see [Cis06, Prop. 8.4.6]). The spaces n are referred to as the extended n-cubes. ⌟

Proposition 2.15. The canonical natural transformation colim ◦ ( •)∗ → (πDiffr )! is an equivalence.

Proof. The image of • is given by Cartr, and the induced functor → Cartr is easily seen to satisfy

the conditions Proposition 1.33, thus verifying the conditions of Theorem 1.27.

Closed cubes

Definition 2.16. We write
• : → Diffr

n 7→ [0, 1]n

for the unique symmetric monoidal functor determined by sending the morphisms δξ : 0 → 1 to 0 7→ ξ

for ξ = 0, 1 (see [Cis06, Prop. 8.4.6]). The spaces n for n ≥ 0 are referred to as the closed n-cubes. ⌟

The following proposition may be proved using an obvious adaption of the proofs of Propositions 2.15

& 2.10.

Proposition 2.17. The canonical natural transformation colim ◦ ( •)∗ → (πDiffr )! is an equivalence.

2.2.2 Change of regularity

Theorem 2.18. Let r ≥ s ≥ 0, and denote by u : Cartr → Carts the forgetful functor, then the

adjunction u∗ : [(Cartr)op, S] [(Carts)op, S] : u∗⊥ restricts to an essential geometric morphism

u∗ : Diffr Diffs : u∗⊥ , such that u! : Diffr → Diffs sends any r-times differentiable manifold to

its underlying s-times differentiable manifold.

Setting s = 0 we obtain the following corollary:

Corollary 2.19. The underlying topological space of any r-times differentiable manifold calculates its

shape.

Proof of Theorem 2.18. The forgetful functor u : Mfdr → Mfds is clearly cover reflecting, so that u∗

preserves sieves, which shows that u∗ restricts to a functor Diffr → Diffs. As u preserves pullbacks along

open embeddings, u satisfies condition iii) of [SGA 4I, Prop. III.1.11], so that u! : M̂fdr → M̂fds preserves

covering sieves, so that u∗ restricts to a functor Diffr ← Diffs. The functor u! : Diffr → Diffs is

obtained by composing the restriction of u! : [(Mfdr)op, S]→ [(Mfds)op, S] to Diffr with the sheafification

functor [(Mfds)op, S]→ Diffs.

2.3 Applications

We now present two applications of the technology developed so far. In §2.3.1 we show that once

we decompose Diffr
ét into the coproduct (in Top) of the ∞-toposes Diffr

ét,d of d-dimensional étale

differentiable stacks, and moreover have Carchedi’s result that the d-th Haefliger stack Hd is final in

Diffr
ét,d (see Theorem 2.22), then the calculation of the shape of Hd (as an object Diffr) follows formally
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from the way in which Diffr is a locally contractible ∞-topos compatibly with its structure as a fractured

∞-topos. Then, in §2.3.2 we observe that the shape of the sheaf on Diff0 represented by a topological

space calculates its singular homotopy type, and thus we are able to harness the descent properties of

Diff0 to prove descent theorems in algebraic topology. We recover Dugger and Isaksen’s hypercovering

theorem (see [DI04, Th. 1.1], Theorem 2.35) essentially for free, and using simple arguments we obtain

Lurie’s Seifert-Van Kampen theorem (see [Lur17, Th. A.3.1], Theorem 2.29) as well as the folk theorem

that the base space of any principal bundle is a homotopy quotient (see Theorem 2.42).

2.3.1 The shape of the Haefliger stack

The underlying topological groupoid of Γd, defined below, now known as the Haefliger groupoid, was

introduced by Haefliger in [Hae58] with a view towards applications to the study of foliations. Its

classifying space (in the sense of [Seg68]) was first determined in [Seg78, Prop. 1.3], and later Carchedi

provided a new calculation of this classifying space in [Car16, Th. 3.7]. The proof we present here is

essentially Carchedi’s, the only difference being that we may exhibit every step of the proof as a formal

manipulation in the calculus afforded by a more systematic account of the theory of locally contractible

∞-toposes and their interactions with fractured ∞-toposes. (Incidentally, similar interactions between

shapes and fractured∞-toposes – although not in this language – are explored by Carchedi in a subsequent

article, [Car21], where GAGA like theorems are established for profinite shapes.)

Before turning to the Haefliger stack we quickly explain how to decompose Diffr
ét,d into a product

of ∞-toposes. Denote by Cartrét,d the category of d-dimensional r-times differentiable Cartesian spaces,

and by Diffr
ét,d, the ∞-topos of S-valued sheaves on Cartrét,d – the d-dimensional étale r-times

differentiable stacks. Observe that Cartrét,d is equivalent to the monoid (viewed as a category) of

r-times differentiable embeddings Embr(Rd,Rd).

Proposition 2.20. Let {Ei}i∈I be a family of ∞-toposes indexed by a (small) set I.

(1) The coproduct of {Ei}i∈I in Top is given by the product of {Ei}i∈I in the ∞-categories of ∞-

categories.

(2) The structure geometric morphism ιi : Ei = Ei × 1Cat → Ei ×
∏

i ̸=j Ej =
∏

i∈I Ei is essential for

every i ∈ I.

(3) For any i ∈ I and any object X in Ei the geometric morphism ιi : (Ei)/X → (
∏

i∈I Ei)/(ιi)!X is an

equivalence.

(4) For any sequence of objects (Xi)i∈I ∈
∏

i∈I Ei we have (Xi)i∈I =
∐

i∈I(ιi)!Xi.

(5) Let {Ci}i∈I be a family of small ∞-categories, then

(5.1) the equivalence
∏

i∈I [C
op
i , S] =

[∐
i∈I Ci, S

]
establishes a bijection

∏
i∈I

{
Grothendieck topologies on Ci

}
=

{
Grothendieck topologies on

∐
i∈I

Ci

}
;

(5.2) if (τi)i∈I and τ are a pair of corresponding elements under the above bijection, then the functors

Ci →
∐

i∈I Ci both preserve and reflect covering sieves and the induced essential geometric
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morphisms ShCi,τi → Sh(
∐

i∈I Ci),τ exhibit Sh(∐i∈I Ci),τ as the coproduct of {ShCi,τi}i∈I (in

Top).

We defer the proof of the above proposition to the end of this subsection. We obtain the following

corollary:

Proposition 2.21. The inclusions Cartrét,d ↪→ Cartrét induce essential geometric morphisms Diffr
ét,d →

Diffd
ét,r exhibiting Diffd

ét,r as the coproduct of {Diffr
ét,d}d≥0.

Now, consider the set-valued presheaf on the topological space Rd (d ≥ 0) given by sending U to the

set of r-times differentiable embeddings of U into Rd. The étalé space of this presheaf, denoted by Γd
0,

may naturally be viewed as an object of Diffr
ét. Its underlying set consists of pairs (x, φ) consisting of a

point x ∈ Rd together with the germ of an embedding of a neighbourhood of x into Rd. Apart from the

structure map Γd
0 → Rd there exists a second étale map Γd

0 → Rd given by sending any element (x, φ) of

Γd
0 to φ(x). Composition of germs endows the simplicial diagram [n] 7→ Γd

n := Γd
0×Rd

(n+1)×
· · · ×RdΓd

0 with

the structure of a groupoid object in Diffr
ét, called the Haefliger groupoid , and is denoted by Γd. The

d-th Haefliger stack , denoted by Hd, is then the étale differentiable stack presented by Γd. As usual,

we will identity Γd and Hd with their images under j! : Diffr
ét → Diffr. The key to calculating the shape

of the Haefliger stack is the following observation by Carchedi:

Theorem 2.22 ([Car19, Th. 3.3]). The d-th Haefliger stack Hd is the final object in Diffr
ét,d.

Sketch of proof. It is enough to show that Diffr
ét,d(R

d,Hd) is contractible. It is nonempty as it contains

at least one element obtained by composing the identity map Rd → Γd
0 with the cover Γd

0 → Hd. Let

f : Rd → Hd be a map, then every point Rd admits a neighbourhood U and a lift

U Γd
0

Rd Hd.

Choosing U sufficiently small, we may assume that U 99K Γd
0 is an embedding, and there exists a

diffeomorphism between U and its image in Γd
0, corresponding to a lift

Γd
1

U Γd
0

so that U ↪→ Γd
0 is equivalent to the standard inclusion. Performing this procedure for every point in Rd,

we see that f may be represented by the identity map Rd → Γd
0. Finally, note that the only automorphism

of the identity map Rd → Γd
0 in the groupoid Diffr

ét,d(R
d,Hd) is the identity.

Applying Proposition 2.20.(4) we obtain the following corollary:

Corollary 2.23. The final object of Diffr
ét is given by

∐
d H

d.
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We now calculate the shape of the d-th Haefliger stack (d ≥ 0).

Theorem 2.24 ([Seg78, Prop. 1.3] & [Car16, Th. 3.7]). For all d ≥ 0:

(πDiffr )!H
d = B Emb(Rd,Rd).

Proof. We have
(πDiffr )!H

d = (πDiffr
ét
)!H

d Th. 1.36

= (πDiffr
ét,d

)!H
d Props. 2.20 & 1.7

= (πDiffr
ét,d

)!

(
1Diffr

ét,d

)
Th. 2.22

= colim1[(Cartrét,d)
op,S] Prop. 1.26

= (Cartrét,d)≃ Ex. 1.23

= B Embr(Rd,Rd),

Remark 2.25. In order to obtain Segal’s original result ([Seg78, Prop. 1.3]) on the classifying space of the

underlying topological groupoid of Γd, it is enough to observe that

1. Hd is given as the colimit of (the simplicial diagram) Γd,

2. u! : Diffr → Diff0 preserves colimits,

3. applying u! to Γd produces the underlying topological groupoid of Γd (Theorem 2.18), and

4. the fat topological realisation calculates homotopy colimits of simplicial diagrams in TSpc.

⌟

We conclude this subsection by giving a sketch of Carchedi’s proof of Theorem 2.24 in [Car16], before

supplying a proof of Proposition 2.20. First, Carchedi constructs the shape functors for Diffr
ét,d and

Diffr (without identifying them as such) as follows: Denote by L : TSpc→ S the localisation functor,

then the sequence of functors

Cartrét,d →Mfdr
ét,d →Mfdr → TSpc→ S

gives rise to the sequence of cocontinuous functors

[(Cartrét,d)
op, S]→ Diffr

ét,d → ShMfdr
ét,d

(= Diffr
ét,d)→ Diffr → S, (11)

as the composition Mfdr → TSpc → S preserves colimits of hypercovers by Theorem 2.35 (and the

fact that fat topological realisations are homotopy colimits), and because the functor Mfdr
ét,d →Mfdr

preserves covering sieves by [SGA 4I, Prop. III.1.11]. Then, one observes that the composition of all the

functors in (11) sends Rd to 1S for all d ≥ 0, so that by cocontinuity the composition is simply given by

the colimit functor. Thus the shape of the d-th Haefliger stack (d ≥ 0) is again given by B Embr(Rd,Rd).

To obtain the comparison with Segal’s result (as in Remark 2.25) it is enough to observe that the shape of

the colimit of any simplicial diagram of (not necessarily 2nd-countable, Hausdorff) manifolds is equivalent
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to the homotopy type of the fat topological realisation of the underlying simplicial diagram of topological

spaces, again by Theorem 2.35 and the fact that fat topological realisations are homotopy colimits.

Proof of Proposition 2.20.

(1) This is Proposition [Lur09, 6.3.2.1].

(2) The initial topos is given by 1Cat, and for any ∞-topos E the unique geometric morphism ∅ :

1Cat → E is essential, where the left adjoint to the pullback functor is given by sending the unique

object of 1Cat to the initial object of E.

(3) The functor Cat1/ → Cat taking any pointed ∞-category 1
c−→ C to C/c is right adjoint to the

cone functor, and thus preserves limits. The ∞-category ({Ei}i∈I)/(ιi)!X is obtained by taking the

product of (
∏

i ̸=j Ei)/∅!1 = (
∏

i̸=j Ei)/∅ = 1 and (Ei)/X .

(4) For any object Y ∈
∏

i∈I E we have

(∏
i∈I Ei

) (∐
i∈I(ιi)!Xi, Y

)
=

∏
i∈I

(∏
i∈I Ei

)
((ιi)!Xi, Y )

=
∏

i∈I

(∏
i∈I Ei

)
(Xi, ι

∗
i Y )

=
(∏

i∈I Ei

)
((Xi)i∈I , Y )

where the last isomorphism follows from [Lur09, Lm. 6.3.3.6].

(5)

(5.1) This is an immediate consequence of statement (3) of the theorem.

(5.2) That the functors Ci →
∐

i∈I Ci both preserve and reflect covering sieves again follows

from (3). The equivalence
∏

i∈I [C
op
i , S]

≃←−
[∐

i∈I Ci, S
]

restricts to a fully faithful functor

ShCi,τi ←↩ Sh(∐i∈I Ci),τ . It remains to show that any presheaf on
∐

i∈I Ci which is sent to an

object in ShCi,τi lies in Sh(
∐

i∈I Ci),τ .

2.3.2 Algebraic topology and descent

Let X be a topological space covered by two open sets U and V such that X,U, V, U ∪ V are connected,

then the Seifert – Van Kampen theorem states that the square

π1X π1V

π1U π1(U ∩ V )

is a pushout (for any basepoint in U ∩ V ). In fact, more is true: Let L : TSpc→ S be the localisation

functor along the Serre-Quillen weak equivalences, then the pushout square in TSpc

X V

U U ∩ V

(12)
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is carried by L to a pushout square in S, i.e., (12) is a homotopy pushout. Squares such as (12) encode

glueing data for topological spaces, so that the Seifert –Van Kampen theorem reflects how descent for

topological spaces interacts with their singular homotopy types.

We give a quick proof of the statement that (12) is a homotopy pushout, which will function as a

paradigm for our new proof of Theorem 2.29 (Lurie’s Seifert – Van Kampen theorem), as well as the proofs

of Theorem 2.35 (Dugger and Isaksen’s hypercovering theorem) and Theorem 2.42 (which states that the

base space of any principal bundles is a homotopy quotient). Denote by v : Cart0 ↪→ TSpc the inclusion

of the category of Cartesian spaces into the category of topological spaces, then v! : [(Cartr)op, S]→ TSpc

sends sieves generated by covers consisting of jointly surjective open embeddings to isomorphisms, so

that we obtain an adjunction

v! : Diff0 TSpc : v∗⊥ .

Proposition 2.26. There exists a canonical natural equivalence:

Diff0
≤0 TSpc

S

v∗

π!

∼

In other words, for any topological space X, the shape of v∗X is canonically equivalent to its singular

homotopy type.

Proof. Observe that the standard simplex functor

∆→ TSpc

factors as ∆
∆!−→ Diff0 v!−→ TSpc. Then, by Proposition 2.10 we obtain the diagram

∆̂ Diff0
≤0 TSpc

S

v∗

π!
π!

∆∗

∼

The desired natural equivalence is then obtained by whiskering.

Warning 2.27. Proposition 2.26 does not imply that the singular homotopy type of a topological space

coincides with its shape. For example, the shape of the Hawaiian earring is not even representable. ⌟

Remark 2.28. Proposition 2.26 and the attendant Theorems 2.29, 2.35, 2.42 remain true when we replace

Diff0 with Diffr for r > 0, but we find this circumstance bewildering, so we have opted to fix r = 0 until

the end of this chapter. ⌟

Now, observe that the commutative square

v∗X v∗V

v∗U v∗(U ∩ V )
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is a pushout square in Diffr (which can be seen, e.g., by pulling back along all continuous maps Rd → v∗X

(d ≥ 0)), so that (12) is a homotopy pushout square by Proposition 2.26 and the fact that π! preserves

colimits.

Lurie’s Seifert –Van Kampen theorem We now prove Lurie’s far reaching generalisation of the

Seifert –Van Kampen Theorem:

Theorem 2.29 ([Lur17, A.3.1]). Let X be a topological space, and denote by OpenX the category of

open subsets of X (ordered by inclusion). Furthermore, let A be a small category, and χ : A→ OpenX ,

a functor. For each element x ∈ X denote by Ax the full subcategory of A spanned by those objects a ∈ A

such that x ∈ χ(a). If (Ax)≃ = 1S for each x ∈ X, then the cocone A� → TSpc obtained by composing

the unique cocone A� → OpenX with apex X on χ with the functor OpenX → TSpc is a homotopy

colimit.

The version of the Seifert –Van Kampen Theorem presented above is then obtained by setting

A = U ← U ∩ V → V , and letting χ be the inclusion A ↪→ OpenX .

Proof of Theorem 2.29. The composition of Diff0 u∗

←− TSpc← OpenX sends any covering {U ⊆ V } to

a covering in Diff0 (as can be seen by pulling back the inclusions u∗U ↪→ u∗V along all maps Rd → u∗V ),

and moreover preserves finite limits, yielding a geometric morphism (uX)∗ : Diff0 ShX : u∗
X⊥ . We

must show that A� → OpenX → ShX
u∗
X−−→ Diff0 π!−→ S is a colimit. As Diff0 is hypercomplete and u∗

X

preserves ∞-connective morphisms, it is enough to show that colimχ → X is ∞-connected (in ShX),

which can be checked by showing that it is sent to an isomorphism by the stalk x∗ : ShX → S for every

elements x ∈ X by [Lur17, Lm. A.3.9.]. The left Kan extension of the constant functor 1S : Ax → S is

given by A
χ−→ ShX

x∗

−→ S, so that we obtain

1S = colim(1S : Ax → S) = colimx∗χ = x∗ colimχ→ x∗X = 1S

where the first isomorphism holds by assumption.

Corollary 2.30. Let X be a topological space, and R ↪→ X a covering sieve (in ÔpenX), then the cocone

R� → TSpc obtained by composing the colimiting cocone R� → OpenX with OpenX → TSpc is a

homotopy colimit.

Proof. Set A = R, and χ equal to the inclusion R ↪→ OpenX . For every point x ∈ X the category Ax is

filtered, and thus its classifying space is contractible.

In [Lur17] Lurie first gives a technical proof of Corollary 2.30, from which he derives Theorem 2.29

using arguments similar to those used in the proof of Theorem 2.29.

R-epimorphisms The two remaining theorems of this section, Theorem 2.35 and Theorem 2.42, are

most naturally expressed using R-epimorphisms, a common generalisation of locally trivial bundles and

open covers.

Proposition 2.31. Let X → Y be a continuous map, then the following are equivalent:
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(1) The map u∗X → u∗Y in Diff0 is an effective epimorphism.

(2) For every d ≥ 0, every continuous map Rd → Y , and every point x ∈ Rd there exists a neighbourhood

U of x and a lift
X

U Rn Y

Definition 2.32. A continuous map X → Y is an R-epimorphism if it satisfies the equivalent conditions

of Proposition 2.31. ⌟

Dugger and Isaksen’s hypercovering theorem

Definition 2.33. Let X be a topological space, then a simplicial diagram U : ∆op → TSpc/X is an

R-hypercover if U∆n → U∂∆n

is an R-epimorphism for all n ≥ 0. ⌟

Example 2.34. Any ordinary hypercover of a topological space is an R-hypercover. ⌟

Theorem 2.35 ([DI04, Th. 1.1]). Let X be a topological space, and U : ∆op → TSpc/X , an R-hypercover,

then the corresponding cocone U : (∆op)� → TSpc is a homotopy colimit.

Proof. The functor Diff0 ← TSpc : v∗ preserves limits, and sends R-epimorphism to effective epimorph-

isms by definition. Therefore, the composition of (v∗/XU)∂∆
n ≃−→ v∗(U∂∆n

) → v∗U∆n

is an effective

epimorphism for every n ≥ 1, so that v∗/XU is a hypercover. Thus, v∗U is a colimit by descent, and we

may apply Proposition 2.26.

Principal bundles Until the end of this section G denotes a topological group. Assume that G acts

on a topological space X. If the action is principal, then it is often taken for granted that X/G is

homotopically well-behaved. For an example of what what is meant by this: if in addition to being

principal, X is moreover contractible, then X/G is a model for BG. To obtain a precise notion of this

homotopical well-behavedness, we note that the localisation functor L : TSpc→ S commutes with finite

products, so that we obtain an action of LG on LX. We then say that X/G is a homotopy quotient of

the action of G on X if the comparison map LX/LG→ L(X/G) is an isomorphism. We will prove in

Theorem 2.42 that if the action of G on X is principal, then X/G is indeed a homotopy quotient.

Remark 2.36. It is often claimed, erroneously, that X/G is a homotopy quotient for any free action. To

see that this is not the case, let G act on a copy of itself equipped with the trivial topology, then the

quotient is a point. If the quotient were a homotopy quotient, it would have to model the classifying

space of G, which is only true if G itself is weakly contractible. It is true however, that any free quotient

in any strict test topos E is a homotopy quotient, as quotients by free actions commute with the inclusion

of E into its associated hypercomplete ∞-topos. ⌟

Our notion of homotopy quotient agrees with more traditional notions of homotopically well-behaved

quotients. For example, the category of topological spaces with a continuous G-action, TSpcG, admits

a model structure in which the weak equivalences are those equivariant maps whose underlying maps
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of topological spaces are weak equivalences (see [M+96, Th. VI.5.2]), and one may ask when X/G has

the same weak homotopy type as X//G, where //G denotes the derived functor of the quotient functor

TSpcG → TSpc. These two notions agree by the following proposition.

Proposition 2.37. The functor TSpcG → SLG is a localisation along the weak equivalences in TSpcG.

Proof. The functor SLG ← TSpcG factors as SLG ← (∆̂)sG ← TSpcG (where sG is the total singular

complex of G), so the proposition follows from [Clo24b, Th. 1.4.14] and the fact that (∆̂)sG ← TSpcG

preserves weak equivalences and induces and equivalence of ∞-categories upon localisation (see [DK84,

1.7]).

Using classical methods we are only aware of a proof of X//G ∼ X/G for a principal action

under the additional (mild) assumptions that G is well pointed, and X is a compactly generated

weakly Hausdorff space: By [Rie14, 9.2.10], X//G may be computed as the topological realisation of

· · · X ×G×G X ×G X, and this topological realisation is weakly equivalent to X/G

by [May75, Props. 7.1 & 8.5] (which relies on technical pointset topological arguments).

We will now systematically investigate the relationship between principal actions and homotopy

quotients.

Definition 2.38. An R-principal G-bundle is an R-epimorphism P → B together with a fibre

preserving action of G on P , such that the shearing map P ×G→ P ×B P is a homeomorphism. ⌟

Example 2.39. Any principal G-bundle is an R-principal G-bundle. ⌟

Lemma 2.40. Let P → B be an R-principal G-bundle, then the diagram

Diff0
v∗G TSpcG

Diff0 TSpc

v∗P×v∗G( ) P×G( )

commutes.

Proof. We will show that the natural transformation v∗P×v∗Gv∗( )→ v∗(P×G ), obtained by whiskering

P × : TSpc→ TSpc with v∗( )/v∗G→ v∗( /G), is a natural isomorphism.

Pulling back X ×G P → B along P → B yields the Cartesian natural transformation

· · · X ×G×G× P X ×G× P X × P X ×G P

· · · P ×B P ×B P P ×B P P B

⌟⌟⌟

As v∗ preserves limits, we see that

· · · v∗X × v∗G× v∗G× v∗P v∗X × v∗G× v∗P v∗X × v∗P

is the Čech complex both of v∗X × v∗P → v∗(X ×G P ) and of v∗X × v∗P → v∗X ×v∗G v∗P , so that the

comparison map v∗X ×v∗G v∗P → v∗(X ×G P ) is an isomorphism by descent.
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Theorem 2.41. Let P → B be a an R-principle G-bundle, and X a G-space, then the comparison map

LX ×LG LP → L(X ×G P ) is an isomorphism in S.

Proof. As v∗P ×v∗G v∗X = (v∗P × v∗X)/v∗G, the theorem follows from Lemma 2.40 and Propositions

1.24 & 2.26.

Setting X = 1 yields the following corollary:

Corollary 2.42. If P → B is an R-principal G-bundle, then B is the homotopy quotient of the G-space

P .

Corollary 2.43. If E → B is a R-principal G-bundle with E weakly contractible, the comparison map

B(LG)→ LB is an isomorphism in S.

Traditionally, the Borel construction is often used as the definition of homotopy quotients. We verify

that the Borel construction computes homotopy quotients in our sense.

Proposition 2.44. The functor ×G E : TSpcG → TSpc preserves weak equivalences, and the induced

functor SLG → S is canonically isomorphic to /LG.

Proof. For any topological space X the map v∗X × v∗E → v∗X is a shape equivalence, so that the outer

square in
SLG Diff0

G TSpcG

S Diff0 TSpc

/LG /v∗G E×G

commutes by Lemma 2.40 and Proposition 1.24.

Conventions and notation

• The term ∞-category means quasi-category.

• We identify ordinary categories with their nerves, and consequently do not notationally distinguish

between ordinary categories and their nerves.

• [ , ] denotes the internal hom in ∆̂, the category of simplicial sets.

• Let C,D be ∞-categories, and W ⊆ C, a subcategory, then [C,D]W denotes the subcategory of

[C,D] spanned by those functors sending every morphism in W to an isomorphism.

• Let X be a simplicial set, then X≃ denotes the classifying space of X, given e.g. by Ex∞A.

• ∞-categories (including ordinary categories) are denoted by C, D, . . .

• Let C be an ∞-category and let x, y ∈ C be two objects, then the homotopy type of morphisms

from x to y is denoted by C(x, y).

• A final object in an ∞-category C is denoted by 1C , or simply by 1, when C is clear from context.
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• For any ∞-category C we denote its subcategory of n-truncated objects by C≤n.

• For any∞-category C with finite products and any group object G in C, we denote CG the category

of G-objects in C.

• For A any small ordinary category Â denotes the category of (set-valued) presheaves on A.

• For any two categories C,D, an arrow C ↪→ D denotes a fully faithful functor.

• We use the following notation for various ∞-categories:

– We adopt the “French” tradition of denoting the ordinary category of presheaves on any small

ordinary category A by Â. E.g., the category of simplicial sets is denoted by ∆̂.

– Canonical isomorphisms are often denoted by equality signs. (An isomorphism is canonical

if it originates from a universal property. More precisely, let u : X → C be a right fibration,

and x, x′ two final objects in X, then for any morphism x→ x′ the morphism ux→ ux′ is a

canonical isomorphism, and we may write x = x′.)

– ∆ denotes the category of simplices. Its objects are denoted by ∆n or [n], depending on

context.

– denotes the category of cubes (see [Cis06, Ch. 8]).

– S denotes the ∞-categories of homotopy types.

– Cat denotes the ∞-category of ∞-categories.

– Top denotes the ∞-category of ∞-toposes.

– Let X be a topological space, then OpenX denotes the locale of open subsets of X.

– Set denotes the category of sets.

– TSpc denotes the category of topological spaces.

– ∆TSpc is the full subcategory of TSpc spanned by the ∆-generated topological spaces.

– Mfdr denotes the category of r-times differentiable smooth manifolds and smooth maps.

– Cartr denotes the full subcategory of Mfdr spanned by the spaces of Rn (0 ≤ n <∞).

– Diffr denotes, equivalently, the ∞-category of sheaves on Mfdr or Cartr.

• We denote ∞-toposes by E,F, . . ., when they are thought of as ambient settings in which to do

geometry, and by X,Y, . . ., when they are thought of as geometric objects in their own right.
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