
DIFFERENTIABLE SHEAVES I: FRACTURED ∞-TOPOSES AND COMPACTNESS

ADRIAN CLOUGH

Abstract. In this note we endow the ∞-topos Diffr of sheaves on the category of Cr-manifolds with
the structure of a fractured ∞-topos and use this structure to give a simple proof that closed manifolds
are categorically compact in Diffr. Moreover, surprisingly, we show that any manifold with non-empty
corners is not categorically compact.

This is the first of three articles discussing Diffr and its useful formal properties.
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In an ∞-topos of sheaves on a site of geometric objects such as
(1) manifolds (see [Car20, §6.1] and §2.1 of this article),
(2) schemes (ordinary, derived or spectral with either the Zariski or étale topology; see [DAG V, §4.2

& §4.3], [DAGVII], [Car20, §6.2], [Lur18, §2.6.4])
(3) derived complex analytic spaces (see [DAG IX, §11 & §12] & [Por19]), or
(4) derived manifolds (see [CS19], [Ste23]),

it is often possible to identify a suitable class of “étale morphisms”, giving rise to the attendant notion of
Deligne-Mumford stack. In [Car20] Carchedi shows that, surprisingly, in many such cases the ∞-category
of Deligne-Mumford stacks (with relaxed finiteness and separatedness conditions) and étale morphisms
form an ∞-topos. The structure of an ∞-topos together with a class of Deligne-Mumford stacks and étale
morphisms is axiomatised by fractured∞-toposes in [Lur18, Def. 20.1.2.1]. Moreover, in the above example
the slice ∞-topos of Deligne-Mumford stacks and étale morphisms over of a fixed Deligne-Mumford stack
recovers its petit ∞-topos, so that fractured ∞-toposes also axiomatise the relationship between petit
and gros ∞-toposes.

This notion of fractured ∞-topos has not received much attention and in this article we demonstrate
a simple yet powerful application thereof to differentiable manifolds. Denote by Diffr the ∞-topos of
S-valued sheaves on the category Mfdr of Cr-manifolds. We equip Diffr with the structure of a fractured
∞-topos. As the petit ∞-topos of any Cr-manifold X is equivalent to the ∞-topos of sheaves on its
underlying topological space, we may express properties of X viewed as an object of Diffr in terms of its
underlying topological space. This allows for a simple proof of Theorem 2.15 that any closed manifold
is categorically compact in Diffr. The surprising fact that any manifold with non-empty corners is
not compact in Diffr follows by contradiction from an explicit computation. Moreover, the classical
results that Diffr has enough points and is local is further clarified by considering the fractured ∞-topos
structure.

This article has two sequels [Clo24a] and [Clo24b], in which, as in the present article, we refine some
existing toposic or homotopical technology and apply it to Diffr. In [Clo24a] we use the fractured
∞-topos structure established here to give a new, conceptual, proof that Diffr is locally contractible,
and then develop a suitable notion of cofinal functors between ∞-toposes in order to show that various
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constructions which extract homotopy types from differentiable sheaves coincide with the shape functor.
In [Clo24b] we develop homotopical calculi on locally contractible ∞-toposes and show that for a large
class of differentiable sheaves the internal mapping sheaf functor is suitably compatible with the shape
functor.

The present article is structured into two parts, §1 & §2, where the first part discusses the basics of
fractured ∞-toposes, and the second applies this technology to differentiable manifolds.

Throughout the whole article, r denotes some element of N ∪ {∞}.

Acknowledgments. I thank Dmitri Pavlov and Mostafa Sabri for helpful discussions on the proof of
Theorem 2.17.

1. Fractured ∞-toposes

In §1.1 we provide a definition of fractured ∞-toposes equivalent to [Lur18, Def. 20.1.2.1] which
highlights the salient properties necessary for us in the present article (as well as [Clo24a] & [Clo24b]).
After this, we discuss some useful properties of fractured ∞-toposes. Then, in §1.2 we discuss the notion
of geometric sites which allow us to construct fractured ∞-toposes (such as Diffr). Finally, in §1.3 we
prove the equivalence between our definition of fractured ∞-topos and Lurie’s.

1.1. Basic definitions and properties.

Definition 1.1. A fractured ∞-topos is an adjunction

j! : E
corp E : j∗⊥

between ∞-toposes Ecorp and E satisfying properties (a) - (d) below:

(a) The topos E is generated under colimits by the objects in the image of j!.
(b) For every object U in Ecorp, the left adjoint in

(j!)/U : Ecorp
/U E/j!U : (j∗)/U⊥

is fully faithful.
(c) The functor Ecorp ← E : j∗ preserves colimits.
(d) For any pullback square

U ′ U

V ′ V

in which U → V and V ′ are in the image of j!, the map U ′ → V ′ is in the image of j!.

An object in E is referred to as corporeal if it is in the image of j!. ⌟

For the rest of this section j! : E
corp → E refers to a fixed fractured ∞-topos. Observe that j! is faithful

(but never full, unless it is an equivalence). The ∞-topos Ecorp will then often be identified with its image
under j!.

A morphism U → X in a fractured ∞-topos E is called admissible if for every pullback diagram

U ′ U

X ′ X

in which X ′ is in Ecorp, the morphism U ′ → X ′ is in Ecorp. Thus, Ecorp may be identified with the
∞-category of corporeal objects in E together with the admissible morphisms. Under mild conditions the
structure of a fractured ∞-topos may be recovered from its class of admissible morphisms (see [Lur18,
Rmk. 20.3.4.6]). Axiom (d) in Definition 1.1 can then be thought of as consisting of two parts:

(1) Admissible morphisms are closed under pullbacks.
(2) If U → V is an admissible morphism, and V is a corporeal object, then U is a corporeal object.
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For any corporeal object U the subcategory of E/U spanned by the admissible morphisms is then equivalent
to the ∞-topos E

corp
/U , so that we obtain gros and petit ∞-toposes E/U and E

corp
/U of U , respectively.

Remark 1.2. In [DAG V] Lurie introduces the notion of a geometry (see Remark 1.10), which is a site with
extra structure. A different interpretation of the notion of fractured ∞-topos is given in [Lur18, §21] as a
“coordinate free” version of geometries (in the sense that a site may be viewed as providing “coordinates”
or generators and relations for an ∞-topos.). In the examples 2 - 4 listed in the beginning of this section
the ∞-toposes are all classifying ∞-toposes for various flavours of locally ringed ∞-toposes, such as
strictly Henselian or locally C∞-ringed ∞-toposes. The structure of a fractured ∞-topos then makes it
possible to define locally ringed morphisms for the various flavours of locally ringed ∞-toposes. From
this perspective the ∞-topos Diffr is unusual in that we don’t know of any insightful way of thinking of
it as a classifying ∞-topos. ⌟

We conclude this subsection with some basic properties of fractured ∞-toposes, which exhibit some
ways in which Ecorp controls certain properties of E.

Proposition 1.3. The functor Ecorp ← E : j∗ is conservative.

Proof. Let X → Y be a morphism in E such that j∗X → j∗Y is an isomorphism, then for every object U
in Ecorp the map Ecorp(U, j∗X)→ Ecorp(U, j∗Y ) is an isomorphism, so that for every object U in Ecorp

the map E(j!U,X)→ E(j!U, Y ) is an isomorphism. As any object Z can be written as a colimit of objects
in the image of j! it follows that E(Z,X)→ E(Z, Y ) is an isomorphism, so that X → Y is an isomorphism
by the Yoneda lemma. □

Corollary 1.4. If Ecorp is hypercomplete, then so is E.

Proof. Let f : X → Y be an ∞-connected morphism in E, then j∗(f≤n) = (j∗f)≤n as j∗ is both
cocontinuous and preserves finite limits (see [Lur09b, Prop. 5.5.6.28]). Thus, j∗X → j∗Y is an isomorphism
in Ecorp, so that by Proposition 1.3 X → Y is an isomorphism. □

Corollary 1.5. If Ecorp has enough points, then so does E.

Proof. Denote by j∗ the right adjoint to j∗ (which exists by the adjoint functor theorem), then any point
p∗ : S→ Ecorp yields a point j∗p∗ : S→ E. Let X → Y be a morphism in E such that p∗j∗X → p∗j∗Y is
an isomorphism for every point p of Ecorp, then j∗X → j∗Y is an isomorphism by assumption, and thus
also X → Y by Proposition 1.3. □

Recall that an ∞-topos F is local if the global sections functor π∗ : F → S admits a right adjoint,
which we denote by π!.

Proposition 1.6. If there exists an object Φ in Ecorp such that j!Φ = 1E, and moreover E
corp
/Φ = S, then

E is local.

Proof. As j∗/Φ = (πE)∗ commutes with colimits, we obtain a triple adjunction

S = E
corp
/Φ E = E/j!Φ

(j∗)/Φ

(j!)/Φ

(j∗)/Φ

where (j!)/Φ ⊣ (j∗)/Φ is the unique geometric morphism E→ S. □

1.2. Geometric sites. We now discuss the notion of geometric site, culminating in Theorem 1.12, which
will allow us to exhibit Diffr as a fractured ∞-topos.

Definition 1.7 ([Lur18, Def. 20.2.1.1]). An admissibility structure on an∞-category G is a subcategory
Gad whose morphisms are referred to as admissible morphisms, such that:

(a) Every equivalence in G is an admissible morphism.
(b) For any admissible morphism U → X and any morphism X ′ → X there exists a pullback square

U ′ U

X ′ X,
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in which U ′ → X ′ is admissible.
(c) For any commutative triangle

X Y

Z

f

gh

in which g : Y → Z is admissible, the morphism f : X → Y is admissible iff h : X → Z is.
(d) Admissible morphisms are closed under retracts.

⌟

Example 1.8. The admissible morphisms in a fractured ∞-topos form an admissibility structure. ⌟

Definition 1.9 ([Lur18, Def. 20.6.2.1]). A geometric site is a triple (G,Gad, τ) consisting of
(i) a small ∞-category G,
(ii) an admissibility structure Gad on G, and
(iii) a Grothendieck topology τ on G,

such that every covering sieve in τ contains a covering consisting of admissible morphisms. ⌟

Remark 1.10. A geometric site (G,Gad, τ) for which G is finitely complete is called a geometry in [DAGV].
⌟

Lemma 1.11 ([Lur18, Props. 20.6.1.1 & 20.6.1.3]). Let (G,Gad, τ) be a geometric site, then there exists
a Grothendieck topology on Gad in which a sieve R in Gad is a covering sieve iff the sieve generated by R

in G is a covering sieve. Any sheaf on G restricts to a sheaf on Gad. □

Theorem 1.12 ([Lur18, Th. 20.6.3.4]). Let (G,Gad, τ) be a geometric site, and denote by E the ∞-topos
of sheaves on G, and, by Ecorp the ∞-topos of sheaves on Gad, then the restriction functor Ecorp ← E : j∗

admits a left adjoint, and the resulting adjunction is a fractured ∞-topos. □

Remark 1.13. In the same way that not every ∞-topos is the category of sheaves on a site, not every
fractured ∞-topos is given as in the preceding theorem. However, it is true that every fractured ∞-topos
may be realised as the localisation of a fractured presheaf ∞-topos, and that this presheaf ∞-topos may
be obtained as in the preceding theorem with τ = ∅. See [Lur18, Th. 20.5.3.4]. ⌟

1.3. Equivalence with Lurie’s definition of fractured ∞-toposes.

Proposition 1.14. Definitions 1.1 and [Lur18, Def. 20.1.2.1] are equivalent.

Proof. Lurie defines a fractured ∞-topos to be an ∞-topos E together with a subcategory Ecorp (which
by [Lur18, Prop. 20.1.3.3] is an ∞-topos) satisfying conditions (0) - (3), which we now recall:

(0) If X is in Ecorp and Y is isomorphic to X, then Y is in Ecorp.
(1) The inclusion functor j! : E

corp → E preserves fibre products.
(2) The inclusion functor j! : E

corp → E has a right adjoint, denoted by Ecorp ← E : j∗, which
preserves colimits and is conservative.

(3) For every morphism U → V in Ecorp the square

j∗U j∗V

U V

is a pullback in E.

First we prove (a) - (d) =⇒ (1) - (2):
(d) =⇒ (1): Let

U ′ U

V ′ V
4



be a pullback square in which U → V and V ′ → V are in Ecorp, then (1) follows from applying (d) first to
the above pullback square, and then to the pullback square obtained by switching U → V and V ′ → V .
(a) & (c) =⇒ (2): Follows from Proposition 1.3.

We now prove (1) - (3) =⇒ (a) - (c): Axioms (a) and (b) follow from [Lur18, Cor. 20.1.3.4] and
[Lur18, Prop. 20.1.3.1], respectively, and axiom (c) is contained in axiom (2).

We conclude the proof by showing that (d) ⇐⇒ (0) & (3) under the assumption of (a) - (c). Recall that
we refer to the image under j! of any corporeal object U again by U .
(d) =⇒ (3): Observe that by (b) & (d) the map j∗U → j∗V ×V U is corporeal, so that for every corporeal
object W we obtain a commutative diagram:

Ecorp(W, j∗U)

Ecorp(W, j∗V ×V U) E(W, j∗V ×V U) E(W,U)

Ecorp(W, j∗V ) E(W, j∗V ) E(W,V ).

The rightmost square is a pullback by the definition of j∗V ×V U , and the leftmost square is a pullback
square by (b). But Ecorp(W, j∗V ) → E(W,V ) and Ecorp(W, j∗U) → E(W,U) are isomorphisms by the
universal properties of j∗V and j∗U , and thus Ecorp(W, j∗V ×V U) → E(W,U) is an isomorphism, so
that Ecorp(W, j∗U)→ Ecorp(W, j∗V ×V U) is an isomorphism.
(0) & (3) =⇒ (d): The pullback square in (d) factors as

U ′ j∗U U

V ′ j∗V V.

The rightmost square is a pullback by (3), and the outer square is a pullback by assumption, so that the
leftmost square is also a pullback. The morphism U ′ → V ′ is then in the image of j! by (0) & (3). □

2. The fractured ∞-topos of differentiable sheaves

In this section we formally define the ∞-topos Diffr of r-times differentiable sheaves, apply the
machinery of §1 to exhibit Diffr as a fractured ∞-topos, and derive some of its basic properties in §2.1.
Finally, in §2.2 we give our first application of the fractured ∞-topos structure on Diffr and show that
closed manifolds are categorically compact in Diffr. Moreover, we show that manifolds with non-empty
boundary or corners are not categorically compact.

2.1. Differentiable sheaves.
1. Mfdr denotes the category of r-times differentiable (2nd-countable, Hausdorff) manifolds and

r-times differentiable maps, and
2. Cartr denotes the full subcategory of Mfdr spanned by the spaces Rn (0 ≤ n <∞).

On each of these small categories we denote by τ the Grothendieck topology in which a sieve on a manifold
is a covering sieve iff it contains a covering consisting of jointly surjective open embeddings.

1. Mfdr
ét denotes the category of r-differentiable manifolds and r-differentiable open embeddings.

2. Cartrét denotes the full subcategory of Mfdr
ét spanned by the spaces Rn (0 ≤ n <∞).

On each of these (essentially) small subcategories we denote the restriction of τ by τét.

Definition 2.1. An S-valued sheaf on Cartr is an r-times differentiable sheaf , and the ∞-topos
thereof is denoted by Diffr. Similarly, an S-valued sheaf on Cartrét is an étale r-times differentiable
stack , and the ∞-topos thereof is denoted by Diffr

ét. ⌟

Combining [Aok23, Cor. A.7] with Corollary 2.14 below, we obtain the following result.
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Proposition 2.2. Denote by u : Cartr ↪→Mfdr (resp. u : Cartrét ↪→Mfdr
ét) the canonical inclusion,

then the restriction functor [(Cartr)op, S] ← [(Mfdr)op, S] : u∗ (resp. [(Cartrét)
op, S] ← [(Mfdr

ét)
op, S] :

u∗) induces an equivalence between Diffr (resp. Diffr
ét) and the ∞-topos of sheaves on Mfdr (resp.

Mfdr
ét). □

Remark 2.3. Observe that our proof of Proposition 2.2 does not use good open covers. The question
of their existence and whether they refine all open covers is subtle (as discussed in detail in [nLa23]).
Moreover, arguments using good open covers may not carry over to other settings such as the real analytic
or complex ones, which we hope to explore in the future. ⌟

Lemma 2.4. The triple (Mfdr,Mfdr
ét, τ) is a geometric site.

Proof. Axioms (a) - (c) are clear. To prove (d), consider a retract

(1)
V ′ U ′ V ′

V U V,

where U ↪→ U ′ is an open subset inclusion. Axiom (d) follows from (b) after proving the following claim:
Claim: The leftmost square in (1) is a pullback.
First, as monomorphisms have the left cancelling property, the map V → V ′ is a monomorphism. Let

y′ ∈ V ′ ∩U , then y′ coincides with its image under U → V , which shows that the leftmost square induces
a pullback on underlying sets. Next, consider a commutative square

V ′ U ′

W U,

then the canonical map of sets W → V is smooth, as it may be written as the composition of W → U →
V . □

Applying Theorem 1.12 we obtain the key result of this subsection:

Theorem 2.5. The ∞-category Diffr is a fractured ∞-topos whose ∞-topos of corporeal objects is given
by Diffr

ét. □

Remark 2.6. Observe that for any smooth manifold, the ∞-topos (Diffr
ét)/M is equivalent to the ∞-topos

of sheaves on underlying topological space of M (and is thus independent of r). ⌟

By [Car16, Th. C.3], Diff∞
ét is equivalent to the∞-topos of sheaves on the category of smooth manifolds

and local diffeomorphisms, so that the fractured ∞-topos Diff∞ coincides with the one considered in
[Car20, §6.1]. Carchedi moreover shows that Diff∞

ét coincides with
(1) the ∞-category of ∞-toposes locally ringed in R-algebras, which can étale-locally be covered by

manifolds.
(2) sheaves in Diffr which may be presented by étale groupoids.

It is prima facie surprising that these two∞-categories are∞-toposes. These observations (in the generality
of [Car20, §5]) were key to the development of fractured ∞-toposes (see [Lur18, Rmk. 20.0.0.2]).

Warning 2.7. The functor j! : Diffr
ét → Diffr does not preserve 0-truncated objects. For example, 1Diffr

ét

is mapped to the Haefliger stack (see [Clo24a, Th. 2.22]), which is 1-truncated but not 0-truncated. ⌟

We finish this subsection by proving some basic properties about the fractured ∞-topos Diffr.

Proposition 2.8. The ∞-topos Diffr is local.

Proof. This follows immediately from Proposition 1.6. □

Lemma 2.9. Let M be a connected, paracompact Hausdorff r-times differentiable manifold M , then the
covering dimension of M is smaller than the dimension of M .
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Proof. By [APG90, §II.6.2] the covering dimension of M is equal to the inductive dimension, which is
≤ dimM . □

Proposition 2.10. For any manifold M the ∞-topos (Diffr
ét)/M is hypercomplete.

Proof. By Lemma 2.9, [Lur09b, Th. 7.2.3.6], and Remark 2.6 the ∞-topos (Diffr
ét)/M has homotopy

dimension ≤ dimM , and is thus hypercomplete by [Lur09b, Cor. 7.2.1.12]. □

By [Lur17, Lm. A.3.9.] we obtain the following corollary:

Corollary 2.11. For any r-times differentiable manifold M the ∞-topos (Diffr
ét)/M has enough points.

□

Proposition 2.12. The ∞-topos Diffr
ét has enough points.

Proof. By Remark 2.6 the adjunction x∗ : S (Diffr
ét)/M : x∗⊥ at any point x ∈ Rd provides a point

of (Diffr
ét)/Rd , and thus a point S

x∗−→ (Diffr
ét)/Rd

(Rd)∗−−−−→ Diffr
ét. Thus, Diffr

ét has enough points, as it
is generated by the spaces Rd under colimits. □

By Corollary 1.5 we obtain the following result:

Corollary 2.13 ([Dug98, Ex. 4.1.2], [ADH21, Prop. A.5.3]). The topos Diffr has enough points. □

By [Lur09b, Rmk. 6.5.4.7] we obtain the following corollary:

Corollary 2.14. The ∞-topos Diffr is hypercomplete. □

2.2. Compact manifolds are compact. In this subsection we discuss the categorical compactness
of manifolds in Diffr. We use the fractured ∞-topos structure to show that any closed manifold is
categorically compact, by relating it to its underlying topological space, which is compact when viewed
as an ∞-topos. Then we discuss the categorical compactness of other manifolds in §2.2.1.

Theorem 2.15. Let M be a closed manifold, then Diffr(M, ) commutes with filtered colimits.

Proof. Let A be a small filtered ∞-category, and let X : A→ Diffr be a diagram, then

colimα Diffr(M,Xα) = colimα Diffr(j!M,Xα)

= colimα Diffr
ét(M, j∗Xα)

= colimα(Diff ét)
r
/M (M,M × j∗Xα)

→ (Diff ét)
r
/M (M, colimα M × j∗Xα)

= (Diff ét)
r
/M (M,M × j∗ colimα Xα)

= Diffr
ét(M, j∗ colimα Xα)

= Diffr(j!M, colimα Xα)

= Diffr(M, colimα Xα)

where the map in the fourth line is an isomorphism by [Lur09b, Th. 7.3.1.16 & Rmk. 7.3.1.5]. □

2.2.1. On the compactness of non-closed manifolds.

Proposition 2.16. Any non-compact manifold is not categorically compact in Diffr.

Proof. By assumption any such manifold M admits a sequence (xi) such that {xi} is a closed subset
of M , then the identity map M

id−→ M = colimn∈N M \ {xi}i≥n, does not factor through any of the
manifolds M \ {xi}i≥n for n ∈ N. □

Theorem 2.17. Any connected manifold with non-empty corners is not categorically compact in Diffr

for r ≥ 2.
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Proof. By Proposition 2.16 it is enough to prove the theorem for (topologically) compact manifolds.
Moreover, as any finite coproduct of categorically compact manifolds is again compact, we may restrict to
connected manifolds. We first prove the theorem for [0, 1], from which we then deduce the general case.

Denote by I the collection of all finite families of r-times differentiable maps of the form {Rdi →
[0, 1]}ki=0, where each map Rdi → [0, 1] factors through either [0, 1) or (0, 1], then I becomes a filtered
poset under inclusion. For any member C = {Rdi → [0, 1]}ki=0 of I denote by [0, 1]C the diffeological
spaces consisting of the set [0, 1] together with the coarsest diffeology making all maps in C differentiable,
then by Proposition [Clo24b, Prop. 1.2.9] colimC∈E [0, 1]C is diffeomorphic to [0, 1]. We will show that
the identity map [0, 1]→ [0, 1] does not factor through [0, 1]C for any C ∈ I, thus showing that [0, 1] is
not compact.

Let us fix C ∈ I as well as f ∈ C, which we assume w.l.o.g. factors through [0, 1). After reparametrising,
we may view f as a function Rd → [0,∞). We will show that for any n > d the restriction of the smooth
map σn : Rn → [0,∞), (x1, . . . , xn) 7→ x2

1 + · · ·+ x2
n to any neighbourhood of 0 ∈ Rn does not factor

through f . Thus, for sufficiently large n, σn does not locally factor through any of the functions in C, so
that [0, 1]C has a strictly coarser diffeology than [0, 1].

So, suppose to the contrary that there exists some neighbourhood U of 0 ∈ Rd such that σn|U factors
through f via a map g : U → Rd, and assume w.l.o.g. that g(0) = 0, then as n > d the kernel of
dg|0 is non-trivial, and we may assume w.l.o.g. that it contains (1, 0, . . . , 0). Choose ε > 0 such that
(−ε, ε) × {0} × · · · × {0} ⊆ U , and write h : (−ε, ε) → Rd for the map x 7→ g(x, 0, . . . , 0), then, by
assumption f ◦ h is given by x 7→ x2, so that (f ◦ h)′′ = 2. On the other hand we have

(f ◦ h)′′(t) =

(
n∑

i=1

h′
i(t) ∂if

(
h1(t), . . . , hn(t)

))′

=

n∑
i=1

h′′
i (t) ∂if

(
h1(t), . . . , hn(t)

)
+

n∑
j=1

h′
i(t)h

′
j(t) ∂i∂jf

(
h1(t), . . . , hn(t)

)
which evaluates to 0 for t = 0 because for all 1 ≤ i ≤ n we have ∂if

(
h1(0), . . . , hn(0)

)
= ∂if(0) = 0 (as

f has a local minimum at 0) and (h′
1(0), . . . , h

′
n(0)) = dg|0(1, 0, . . . , 0) = 0 by assumption, yielding a

contradiction.
Now, let M be a manifold of dimension > 1 with non-empty corners, then by assumption M admits at

least one chart RdimM−1 × [0,∞) ↪→M . Consider the embedding

ι : [0, 1] ↪→ RdimM−1 × [0,∞), θ 7→ (cosπθ, 0, . . . , 0, sinπθ).

Denote by L the image of the embedding [0, 1]
ι−→ RdimM−1 ↪→ M , and denote by f : M → [0, 1]

an extension the diffeomorphism L → [0, 1]. With notation as above, assume that f factors through
[0, 1]C ↪→ [0, 1] for some C in I, then this implies that the identity map id[0,1] : [0, 1] → [0, 1] factors

through [0, 1]C ↪→ [0, 1], as id[0,1] is equal to the composition of [0, 1] ι−→ RdimM−1× [0,∞) ↪→M
f−→ [0, 1],

yielding a contradiction. □

It is possible to show that the category of r-times differentiable manifolds with corners, when equipped
with the standard Grothendieck topology and open immersions, forms a geometric site, yielding a fractured
∞-topos by Theorem 1.12, in which all topologically compact manifolds are categorically compact by
the same argument as in Theorem 2.15. Thus, in a sense, topologically compact manifolds with corners
become categorically compact when corners are encoded as structure rather than as a property.

For r = 0 this geometric site yields a fractured ∞-topos, which is equivalent to Diff0, so in this
case topologically compact manifolds with corners are also compact in Diff0. We don’t know whether
topologically compact C1-manifolds with corners are categorically compact in Diff1.

Conventions and notation

• Canonical isomorphisms are often denoted by equality signs. (An isomorphism is canonical if it
originates from a universal property. More precisely, let u : X → C be a right fibration, and x, x′
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two final objects in X, then for any morphism x → x′ the morphism ux → ux′ is a canonical
isomorphism, and we may write x = x′.)

• [ , ] denotes the internal hom in the ∞-category of ∞-categories.
• ∞-categories (including ordinary categories) are denoted by C, D, . . .
• Let C be an ∞-category and let x, y ∈ C be two objects, then the homotopy type of morphisms

from x to y is denoted by C(x, y).
• A final object in an∞-category C is denoted by 1C , or simply by 1, when C is clear from context.
• For any ∞-category C we denote its subcategory of n-truncated objects by C≤n.
• For any two categories C,D, an arrow C ↪→ D denotes a fully faithful functor.
• We use the following notation for various ∞-categories:

– S denotes the ∞-categories of homotopy types.
– Cat denotes the ∞-category of ∞-categories.
– Top denotes the ∞-category of ∞-toposes.
– Mfdr denotes the category of r-times differentiable smooth manifolds and smooth maps.
– Cartr denotes the full subcategory of Mfdr spanned by the spaces of Rn (0 ≤ n <∞).
– Diffr denotes, equivalently, the ∞-category of sheaves on Mfdr or Cartr.

• We denote ∞-toposes by E,F, . . ., when they are thought of as ambient settings in which to do
geometry, and by X,Y, . . ., when they are thought of as geometric objects in their own right.
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